33. FLI GHT PLANNI NG AND FLIGHT MONIT. A/ C

33.01. FLIGHT PLANS CROSSCOUNTRY FLIGHTS

33.01.01. Navigation plan

33.01.01.01. Selection of routes, speeds, heights

$\mathbf{0}$ An aircraft is flying at MACH 0.84 at FL 330 . The static air temperature is $-48^{\circ} \mathrm{C}$ and
id 57 the headwind component 52 Kt . At 1338 UTC the controller requests the pilot to cross the meridian of 030 W at 1500 UTC. Given the distance to go is 570 NM , the reduced MACH No. should be:
a 0.72
b 0.78
c 0.76
d 0.80
1 According to the chart the minimum obstruction clearance altitude (MOCA) is 8500
id 1395 ft . The meteorological data gives an outside air temperature of $-20^{\circ} \mathrm{C}$ at FL 85 . The QNH, given by a met. station at an elevation of 4000 ft , is 1003 hPa . What is the minimum pressure altitude which should be flown according to the given MOCA?
a 8500 ft .
b 8800 ft .
c 12800 ft .
d 8200 ft .
$\mathbf{2}$ VFR flights shall not be flown over the congested areas of cities at a height less id 1853 than
a the heighest obstacle.
b 2000 ft above the heighest obstacle within a radius of 600 ft from the aircraft.
c 500 ft above the heighest obstacle.
d 1000 ft above the heighest obstacle within a radius of $\mathbf{6 0 0} \mathbf{m}$ from the aircraft.

```
    3 How many feet you have to climb to reach FL 75? Given: FL 75; departure
id 1854 aerodrome elevation 1500 ft ; QNH \(=1023 \mathrm{hPa}\); temperature \(=\mathrm{ISA} ; 1 \mathrm{hPa}=30 \mathrm{ft}\)
a 6300 ft .
b 6000 ft .
c 6600 ft .
d 7800 ft .
```

 4 An aeroplane is flying VFR and approaching position TANGO VORTAC (48․37'N,
 id 4393 $009^{\circ} 16^{\prime} \mathrm{E}$) at FL 055 and magnetic course 090°, distance from VORTAC TANGO 20 NM. Name the frequency of the TANGO VORTAC.
a 422 kHz
b 118.60 MHz
c 112.50 MHz
d 118.80 MHz

5 Flying VFR from VILLINGEN ($48^{\circ} 03.5^{\prime} \mathrm{N}, 008^{\circ} 27.0^{\prime}$ E) to FREUDENSTADT
id 4578 ($48^{\circ} 28.0^{\prime} \mathrm{N}, 008^{\circ} 24.0^{\prime} \mathrm{E}$). Determine the minimum altitude within a corridor 5 NM left and 5 NM right of the courseline in order to stay 1000 ft clear of obstacles.
a 2900 ft
b 3900 ft
c 4200 ft
d 1500 ft
6 Flying VFR from PEITING (4748.0'N, 01055.5'E) to IMMENSTADT (47 $33.5^{\prime} \mathrm{N}$,
id 4581 010 $13.0^{\prime} \mathrm{E}$). Determine the minimum altitude within a corridor 5 NM left and 5 NM right of the courseline in order to stay 1000 ft clear of obstacles.
a 6900 ft
b 5500 ft
c 6600 ft
d 5300 ft

33.01.01.02. Measurement of tracks and distances

7 Flying VFR from VILLINGEN (4803.5'N, 008²7.0'E) to FREUDENSTADT
id 4576 ($\left.48^{\circ} 28.0^{\prime} \mathrm{N}, 008^{\circ} 24.0^{\prime} \mathrm{E}\right)$ determine the magnetic course.
a 176°
b 356°
c 004°
d 185°
8 Flying VFR from VILLINGEN (4803.5'N, 008²7.0'E) to FREUDENSTADT id 4577 ($\left.48^{\circ} 28.0^{\prime} \mathrm{N}, 008^{\circ} 24.0^{\prime} \mathrm{E}\right)$ determine the distance.
a 24 NM
b 46 NM
c 28 NM
d 24 km
9 Flying VFR from PEITING (47048.0'N, 01055.5'E) to IMMENSTADT ($47^{\circ} 33.5^{\prime} \mathrm{N}$, id 4579 010 $13.0^{\prime} \mathrm{E}$) determine the magnetic course.
a 063°
b 243°
c 257°
d 077°
10 Flying VFR from PEITING ($47^{\circ} 48.0^{\prime} \mathrm{N}, 010^{\circ} 55.5^{\prime} \mathrm{E}$) to IMMENSTADT $\left(47^{\circ} 33.5^{\prime} \mathrm{N}\right.$, id 4580 010 $13.0^{\prime} \mathrm{E}$) determine the distance.
a 32 NM
b 46 NM
c 58 NM
d 36 NM

11	The average magnetic course from $\mathrm{C}\left(62^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}\right)$ to $\mathrm{B}\left(58^{\circ} \mathrm{N} 004^{\circ} \mathrm{E}\right)$ is
5737	

a 109°
b 119°
c 099°
d 118°

12
id 5738

a 120°
b 119°
c 099°
d 109°

13	The initial magnetic course from $\mathrm{C}\left(62^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}\right)$ to $\mathrm{B}\left(58^{\circ} \mathrm{N} 004^{\circ} \mathrm{E}\right)$ is
5739	

id 5739
a 116°
b 080°
c 098°
d 113°

14	
id 5740	The initial true course from $\mathrm{C}\left(62^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}\right)$ to $\mathrm{B}\left(58^{\circ} \mathrm{N} 004^{\circ} \mathrm{E}\right)$ is

a 098°
b 116°
c 080°
d 278°

15	The distance (NM) from $\mathrm{A}\left(64^{\circ} \mathrm{N} 006^{\circ} \mathrm{E}\right)$ to $\mathrm{C}\left(62^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}\right)$ is
d741	

a 720
b 690
c 1590
d 1440

$\mathbf{1 6}$	The average magnetic course from $\mathrm{A}\left(64^{\circ} \mathrm{N} 006^{\circ} \mathrm{E}\right)$ to $\mathrm{C}\left(62^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}\right)$ is

a 271°
b 259°
c 247°
d 279°

$\mathbf{1 7}$	The average true course from $\mathrm{A}\left(64^{\circ} \mathrm{N} 006^{\circ} \mathrm{E}\right)$ to $\mathrm{C}\left(62^{\circ} \mathrm{NO} 00^{\circ} \mathrm{W}\right)$ is
d	

a 271°
b 247°
c 259°
d 079°
18 The initial magnetic course from $\mathrm{A}\left(64^{\circ} \mathrm{N} 006^{\circ} \mathrm{E}\right)$ to $\mathrm{C}\left(62^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}\right)$ is
id 5744
a 262°
b 267°
c 271°
d 275°

19 The initial true course from $\mathrm{A}\left(64^{\circ} \mathrm{N} 006^{\circ} \mathrm{E}\right)$ to $\mathrm{C}\left(62^{\circ} \mathrm{NO} 20^{\circ} \mathrm{W}\right)$ is
id 5745
a 271°
b 275°
c 267°
d 246°
20 The distance (NM) from C $\left(62^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}\right)$ to $\mathrm{B}\left(58^{\circ} \mathrm{N} 004^{\circ} \mathrm{E}\right)$ is
id 5746
a 775
b 725
c 700
d 760

33.01.01.04. Comp. of headings, ground speeds

$\mathbf{2 1}$ On a given path, it is possible to chose between four flight levels (FL), each
id 58 associated with a mandatory flight Mach Number (M). The flight conditions, static air temperature (SAT) and headwind component (HWC) are given below: FL 370 $\mathrm{M}=0.80 \mathrm{Ts}=-60^{\circ} \mathrm{C} \quad \mathrm{HWC}=-15 \mathrm{kt} \mathrm{FL} 330-\mathrm{M}=0.78 \mathrm{Ts}=-60^{\circ} \mathrm{C} \quad \mathrm{HWC}=-5 \mathrm{kt}$ FL $290-\mathrm{M}=0.80 \mathrm{Ts}=-55^{\circ} \mathrm{C} \mathrm{HWC}$
a FL270
b FL290
c FL330
d FL370
22 A twin-jet aeroplane carries out the WASHINGTON-PARIS flight. When it reaches id 59 point $\mathrm{K}\left(35^{\circ} \mathrm{N}-048^{\circ} \mathrm{W}\right)$ a non-mechanical event makes the Captain consider rerouting to one of the three following fields. The flight conditions are: - from K to BERMUDAS (distance 847NM, headwind component=18 kt) - from K to SANTA MARIA (distance 1112 NM, tailwind component=120 kt) - from K to GANDER
a BERMUDAS or GANDER, or SANTA MARIA
b SANTA MARIA
c BERMUDAS
d Either GANDER or BERMUDAS
23 An aeroplane flies at an airspeed of 380 kt. It flies from A to B and back to A.
id 70 Distance $A B=480 \mathrm{NM}$. When going from A to B, it experiences a headwind component $=60 \mathrm{kt}$. The wind remains constant. The duration of the flight will be:
a 3 h 00 min
b 2 h 35 min
c 2 h 10 min
d 2 h 32 min
24 Given : true track 017; W/V 340/30; TAS 420 kt Find : wind correction angle (WCA) id 2049 and ground speed (GS)
a WCA - $\mathbf{2}^{\circ}$; GS 396 kt
b WCA +2 ${ }^{\circ}$; GS 396 kt
c WCA -2 ; GS 426 kt
d WCA $+2^{\circ}$; GS 416 kt

25 Flight planning chart for an aeroplane states, that the time to reach the cruising id 2175 level at a given gross mass is 36 minutes and the distance travelled is 157 NM (zero-wind). What will be the distance travelled with an average tailwind component of 60kt?
a 193 NM
b 128 NM
c 157 NM
d 228 NM
26 You are flying a constant compass heading of 252°. Variation is $22^{\circ} \mathrm{E}$, deviation is id $2181 \quad 3^{\circ} \mathrm{W}$ and your INS is showing a drift of 9° right. True track is ?
a 242°
b 224°
c 280°
d 262°
27 Given: True course (TC) 017°, W/V 340$/ 30$ kt, True air speed (TAS) 420 kt Find:
id 4385 Wind correction angle (WCA) and ground speed (GS)
a WCA -2°, GS 426 kt
b WCA $+2^{\circ}$, GS 396 kt
c WCA - $\mathbf{2}^{\circ}$, GS 396 kt
d WCA $+2^{\circ}$, GS 416 kt

33.01.01.05. Completion of pre-flight portion

28 An executive pilot is to carry out a flight to a French aerodrome, spend the night id 5540 there and return the next day. Where will he find the information concerning parking and landing fees ?
a in the FAL section of the French Aeronautical Information Publication (AIP)
b in the AGA chapter of the French Aeronautical Information Publication (AIP)
c in the GEN chapter of the French Aeronautical Information Publication (AIP)
d by telephoning the aerodrome's local chamber of commerce, this type of information not being published

33.01.02. Fuel plan

33.01.02.01. Computation of planned fuel usage

29 (For this question use Flight Planning Manual MEP1 Figure 3.1) A flight is to be
id 2040 made from one airport (elevation 3000 ft) to another in a multi engine piston aireroplane (MEP1). The cruising level will be FL 110. The temperature at FL 110 is ISA $-10^{\circ} \mathrm{C}$. The temperature at the departure aerodrome is $-1^{\circ} \mathrm{C}$. Calculate the fuel to climb with mixture rich.
a 9 US gallon
b 6 US gallon
c 12 US gallon
d 3 US gallon

30 (For this question use Flight Planning Manual MEP1 Figure 3.6) A flight is to be
id 2041 made to an airport, pressure altitude 3000 ft , in a multi engine piston aireroplane (MEP1). The forecast OAT for the airport is $-1^{\circ} \mathrm{C}$. The cruising level will be FL 110, where OAT is $-10^{\circ} \mathrm{C}$. Calculate the still air descent distance for: 145 KIAS Rate of descent $1000 \mathrm{ft} / \mathrm{min}$ Gears and flaps up
a 25 NM
b 29 NM
c 36 NM

d 20 NM

31 (For this Question use Flight Planning \& Monitoring SEP1 Fig. 2.2) Given: FL 75 id 2565 OAT $+10^{\circ} \mathrm{C}$ Lean mixture 2300 RPM Find: Fuel flow in gallons per hour (GPH) and TAS.
a 71.1 GPH TAS: 143 kt
b 11.6 GPH TAS: 143 kt
c 11.6 GPH TAS: 160 kt
d 68.5 GPH TAS: 160 kt
32 (For this Question use Flight Planning \& Monitoring SEP1 Fig. 2.1)Given: FL 75
id 2566 OAT: $+5^{\circ} \mathrm{C}$ During climb: average head wind component 20 kt Take-off from MSL with the initial mass of 3650 lbs . Find: Time and fuel to climb.
a 7 min . 2,6 USG
b $10 \mathrm{~min} .3,6$ USG
c 9 min . $\mathbf{3 , 3} \mathbf{U}$ USG
d 9 min. 2,7 USG
33 (For this Question use Flight Planning \& Monitoring SEP1 Fig. 2.1) Given: FL 75
id 2567 OAT: $+5^{\circ} \mathrm{C}$ During climb: average head wind component 20 kt Take-off from MSL with the initial mass of 3650 lbs . Find: Still air distance (NAM) and ground distance (NM) using the graph "time, fuel, distance to climb".
a 18 NAM. 15 NM.
b 16 NAM. 18 NM.
c 18 NAM. 13 NM.
d 14 NAM. 18 NM.
34 (For this Question use Flight Planning \& Monitoring SEP 1, Fig. 2.1) Given: Take-
id 4391 off mass 3500 lbs , departure aerodrome pressure altitude 2500 ft , $\mathrm{OAT}+10^{\circ} \mathrm{C}$, First cruising level: FL 140, OAT $-5^{\circ} \mathrm{C}$ Find the time, fuel and still air distance to climb.
a 22 min , $6.7 \mathrm{GAL}, 45$ NAM
b $24 \mathrm{~min}, 7.7 \mathrm{GAL}, 47$ NAM
c $16.5 \mathrm{~min}, 4.9 \mathrm{GAL}, 34.5 \mathrm{NAM}$
d $23 \mathrm{~min}, 7.7 \mathrm{GAL}, 50$ NAM
35 (For this Question use Flight Planning \& Monitoring SEP1, Fig. 2.4) Given:
id 4392 Aeroplane mass at start-up 3663 lbs , Aviation gasoline (density $6 \mathrm{lbs} / \mathrm{gal})$-fuel load 74 gal, Take-off altitude sea level, Headwind 40 kt, Cruising altitude 8000 ft , Power setting full throttle 2300 RPM $20^{\circ} \mathrm{C}$ lean of peak EGT Calculate the range.
a 547.5 NM
b 844 NM
c 730 NM
d 633 NM

36 The fuel burn off is $200 \mathrm{~kg} / \mathrm{h}$ with a relative fuel density of 0,8 . If the relative density id 5517 is 0,75 , the fuel burn will be:
a $213 \mathrm{~kg} / \mathrm{h}$
b 200 kg/h
c $188 \mathrm{~kg} / \mathrm{h}$
d $267 \mathrm{~kg} / \mathrm{h}$
37 In the cruise at FL 155 at 260 kt TAS, the pilot plans for a 500 feet/min descent in
id 5533 order to fly overhead MAN VOR at 2000 feet (QNH 1030). TAS will remain constant during descent, wind is negligible, temperature is standard. The pilot must start the descent at a distance from MAN of:
a 140 NM
b 120 NM
c 110 NM
d 130 NM
38 An aircraft is in cruising flight at FL 095, IAS 155kt. The pilot intends to descend at
id 5539 500 ft/min to arrive overhead the MAN VOR at 2000 FT (QNH 1030 hPa). The TAS remains constant in the descent, wind is negligeable, temperature standard. At which distance from MAN should the pilot commence the descent?
a 48 NM
b 42 NM
c 40 NM
d 45 NM
39 (For this Question use Fuel Planning MRJT1) Given : Distance C - D: 3200 NM id 5674 Long Range Cruise at FL 340 Temperature Deviation from ISA : $+12^{\circ} \mathrm{C}$ Tailwind component : 50 kt Gross mass at C : 55000 kg The fuel required from C-D is :
a 17500 kg
b 14200 kg
c 17800 kg
d 14500 kg
40 (For this Question use Fuel Planning MRJT1) Given : Distance C - D: 680NM
id 5675 Long Range Cruise at FL340 Temperature Deviation from ISA : $0^{\circ} \mathrm{C}$ Headwind component : 60 kt Gross mass at C : 44700 kg The fuel required from C-D is :
a 3400 kg
b 3700 kg
c 3100 kg
d 4000 kg
41 (For this Question use Fuel Planning MRJT1) Given : Brake release mass : 58000
id 5676 kg Temperature: $I S A+15$ The fuel required to climb from an aerodrome at elevation 4000 ft to FL 300 is :
a 1350 kg
b 1400 kg
c 1450 kg
d 1250 kg

42 (For this Question use Fuel Planning MRJT1) Given : Brake release mass : 62000
id 5677 kg Temperature: $\mathrm{ISA}+15^{\circ} \mathrm{C}$ The fuel required for a climb from Sea Level to FL330 is :
a 1800 kg
b 1650 kg
c 1750 kg
d 1700 kg
43 (For this Question use Fuel Planning MRJT1) Given : Distance B - C : 1200 NM
id 5679 Cruise Mach 0.78 at FL300 Temperature Deviation from ISA: $-14^{\circ} \mathrm{C}$ Tailwind component : 40 kt Gross mass at B : 50200 kg The fuel required from $\mathrm{B}-\mathrm{C}$ is :
a 5850 kg
b 6150 kg
c 7300 kg
d 7050 kg
44 (For this Question use Fuel Planning MRJT1) Given : Distance C - D: 540 NM
id 5680 Cruise 300 KIAS at FL 210 Temperature Deviation from ISA : $+20^{\circ} \mathrm{C}$ Headwind component : 50 kt Gross mass at C : 60000 kg The fuel required from C to D is :
a 3680 kg
b 4620 kg
c 3350 kg
d 4242 kg
45 (For this Question use Fuel Planning MRJT1) Given : Distance B - C : 350 NM id 5681 Cruise 300 KIAS at FL 210 Temperature: $-40^{\circ} \mathrm{C}$ Tailwind component: 70 kt Gross mass at B : 53200 kg The fuel required from $\mathrm{B}-\mathrm{C}$ is :
a 1940 kg
b 1810 kg
c 2800 kg
d 2670 kg
46 (For this Question use Fuel Planning MRJT1) For a flight of 2800 ground nautical
id 5711 miles the following apply: Head wind component: 15 kt Temperature: ISA + $15^{\circ} \mathrm{C}$ Cruise altitude: 35000 ft Landing mass: 50000 kg The (a) trip fuel and (b) trip time respectively are :
a (a) 20000 kg (b) 7 hr 00 min
b (a) 16200 kg (b) 6 hr 20 min
c (a) 17000 kg (b) 6 hr 10 min
d (a) $\mathbf{1 7 6 0 0} \mathrm{kg}$ (b) $\mathbf{6} \mathrm{hr} 50 \mathrm{~min}$
47 (For this Question use Fuel Planning MRJT1) For a flight of 2800 ground nautical
id 5712 miles the following apply: Head wind component: 20 kt Temperature: ISA + $15^{\circ} \mathrm{C}$ Brake release mass: 64700 kg The (a) trip fuel, and (b) trip time respectively are :
a (a) 16200 kg (b) 6 hr 20 min
b (a) 15800 kg (b)
(b) 6 hr 15 min
c (a) $\mathbf{1 7 0 0 0} \mathbf{~ k g ~ (b) ~} \mathbf{6 h r} \mathbf{4 5} \mathbf{~ m i n}$
d (a) 18400 kg (b) 7 hr 00 min

48 (For this Question use Fuel Planning MRJT1) For a flight of 1900 ground nautical
id 5713 miles the following apply: Head wind component 10 kt Temperature ISA $-5^{\circ} \mathrm{C}$ Trip fuel available 15000 kg Landing mass 50000 kg What is the minimum cruise level (pressure altitude) which may be planned?
a 17000 ft
b 22000 ft
c 14000 ft
d 10000 ft
49 (For this Question use Fuel Planning MRJT1) Given the following: Head wind
id 5714 component 50 kt Temperature $\mathrm{ISA}+10^{\circ} \mathrm{C}$ Brake release mass 65000 kg Trip fuel available 18000 kg What is the maximum possible trip distance?
a 3480 NM
b 3100 NM
c 2740 NM
d 2540 NM
50 (For this Question use Fuel Planning MRJT1) For a flight of 2800 ground nautical
id 5718 miles the following apply: Tail wind component 45 kt Temperature ISA $-10^{\circ} \mathrm{C}$ Cruise altitude 29000 ft Landing mass 55000 kg The (a) trip fuel (b) trip time respectively are :
a (a) 20000 kg (b) 6 hr 40 min
b (a) 18000 kg (b) 5 hr 50 min
c (a) 17100 kg (b) 6 hr 07 min
d (a) 16000 kg (b) 6 hr 25 min
51 (For this Question use Fuel Planning MRJT1) The following apply: Temperature
id 5720 ISA $+15^{\circ} \mathrm{C}$ Brake release mass 62000 kg Trip time 5 hr 20 min What is the trip fuel?
a 13800 kg
b 13000 kg
c 13200 kg
d 13500 kg
52 (For this Question use Fuel Planning MRJT1) For a flight of 2400 ground nautical
id 5721 miles the following apply: Temperature ISA $-10^{\circ} \mathrm{C}$ Cruise altitude 29000 ft Landing mass 45000 kg Trip fuel available 16000 kg What is the maximum headwind component which may be accepted?
a 0
b 15kt
c 70 kt
d 35 kt
53 (For this Question use Fuel Planning MRJT1) The following apply : Tail wind
id 5722 component 10 kt Temperature ISA $+10^{\circ} \mathrm{C}$ Brake release mass 63000 kg Trip fuel available 20000 kg What is the maximum possible trip distance?
a 3500 NM
b 3640 NM
c 3740 NM
d 3250 NM

54 (For this Question use Fuel Planning MRJT1) For a flight of 2400 ground nautical
id 5724 miles the following apply : Tail wind component $25 \mathrm{kt} \mathrm{Temperature} \mathrm{ISA}-10^{\circ} \mathrm{C}$ Cruise altitude 31000 ft Landing mass 52000 kg The (a) trip fuel and (b) trip time respectively are :
a (a) 14200 kg (b) 5 hr 30 min
b (a) 16200 kg (b) 5 hr 45 min
c (a) 13600 kg (b) 6 hr 30 min
d (a) 12000 kg (b) 5 hr 15 min

33.01.02.02. Fuel for holding or diversion

55 Given: Dry operating mass (DOM) $=33510 \mathrm{~kg}$ Load $=7600 \mathrm{~kg}$ Final reserve fuel= id 1856 983 kg Alternate fuel= 1100 kg Contingency fuel 102 kg The estimated landing mass at alternate should be :
a 42312 kg .
b 42093 kg .
c 42210 kg .
d 42195 kg .
56 Given: Dry operating mass (DOM) $=33000 \mathrm{~kg}$ Load $=8110 \mathrm{~kg}$ Final reserve fuel= id 1857983 kg Alternate fuel $=1100 \mathrm{~kg}$ Contingency fuel 102 kg The estimated landing mass at alternate should be :
a 42312 kg .
b 41110 kg .
c 42210 kg .
d 42195 kg .
57 Given: Dry operating mass (DOM)=33510 kg Load= 7600 kg Trip fuel (TF)=2040
id 1858 kg Final reserve fuel $=983 \mathrm{~kg}$ Alternate fuel= 1100 kg Contingency fuel $=5 \%$ of trip fuel Which of the listed estimated masses is correct?
a Estimated take-off mass= 45233 kg .
b Estimated landing mass at destination= 43295 kg .
c Estimated landing mass at destination $=43193 \mathrm{~kg}$.
d Estimated take-off mass $=43295 \mathrm{~kg}$.
58 (For this Question use Fuel Planning MRJT1) HOLDING PLANNING The fuel
id 5682 required for 30 minutes holding, in a racetrack pattern, at PA 1500 ft , mean gross mass 45000 kg , is :
a 1010 kg
b 1090 kg
c 1310 kg
d 2180 kg
59 (For this Question use Fuel Planning MRJT1) HOLDING PLANNING The fuel
id 5683 required for 45 minutes holding, in a racetrack pattern, at PA 5000 ft , mean gross mass 47000 kg , is :

a 1635 kg

b 1090 kg
c 1690 kg
d 1125 kg

60 (For this Question use Fuel Planning MRJT1) Given: Distance to Alternate 450 NM
id 5684 Landing mass at Alternate: 45000 kg Tailwind component: 50 kt The Alternate fuel required is :
a 2900 kg
b 2750 kg
c 3050 kg
d 2500 kg
61 (For this Question use Fuel Planning MRJT1) Given : Distance to Alternate : 400
id 5685 NM Landing mass at Alternate: 50 000kg Headwind component: 25 kt The alternate fuel required is :
a 2650 kg
b 2550 kg
c 2900 kg
d 2800 kg

33.01.02.03. Reserves

62 A public transport aeroplane with reciprocating engines, is flying from PARIS to id 60 LYON. The final reserve corresponds to:
a 45 minutes at holding speed
b 2 hours at cruise consumption
c 1 hour at holding speed
d 30 minutes at holding speed
63 In a flight plan when the destination aerodrome is A and the alternate aerodrome is
id 61 B, the final reserve fuel for a turbojet engine aeroplane corresponds to:
a 15 minutes holding 2,000 feet above aerodrome A
b 30 minutes holding 2,000 feet above aerodrome B
c $\mathbf{3 0}$ minutes holding $\mathbf{1 , 5 0 0}$ feet above aerodrome B
d 30 minutes holding 1,500 feel above aerodrome A
64 Following in-flight depressurisation, a turbine powered aeroplane is forced to divert
id 1199 to an en-route alternate airfield. If actual flight conditions are as forecast, the minimum quantity of fuel remaining on arrival at the airfield will be:
a at least equivalent to 45 minutes flying time
b at least equivalent to the quantity required to fly to another aerodrome in the event that weather conditions so require
c laid down by the operator, with the quantity being specified in the operating manual
d at least equivalent to 30 minutes flying time

33.01.02.04. Total fuel requirements for flight

65 The Trip Fuel for a jet aeroplane to fly from the departure aerodrome to the
id 62 destination aerodrome is 5350 kg . Fuel consumption in holding mode is 6000 kg / h. The quantity of fuel which is needed to carry out one go-around and land on the alternate airfield is 4380 kg . The destination aerodrome has a single runway. What is the minimum quantity of fuel which should be on board
a 13000 kg
b 13230 kg
c 12700 kg
d 10000 kg

66 For turbojet engine driven aeroplane, given: Taxi fuel 600 kg Fuel flow for
id 63 cruise $10000 \mathrm{~kg} / \mathrm{h}$ Fuel flow for holding $8000 \mathrm{~kg} / \mathrm{h}$ Alternate fuel 10200 kg Planned flight time to destination 6 h Forecast visibility at destination 2000 m The m
a 77800 kg
b 76100 kg
c 80500 kg
d 79200 kg
67 (For this Question use Flight Planning \& Monitoring MEP1) A flight has to be made id 2539 with a multi engine piston aeroplane. For the fuel calculations take 5 US gallons for the taxi, and an additional 13 minutes at cruise condition to account for climb and descent. Calculated time from overhead to overhead is 1 h 47 min . Powersetting is $45 \%, 2600$ RPM. Calculated reserve fuel is 30% of the tri
a 37 US gallons.
b 47 US gallons.
c 60 US gallons.
d 470 US gallons.
68 (For this Question use Flight Planning \& Monitoring MEP1) A flight has to be made id 2540 with a multi engine piston aeroplane. For the fuel calculations take 5 US gallons for the taxi, and an additional 13 minutes at cruise condition to account for climb and descent. Calculated time overhead to overhead is 2 h 37 min . Powersetting is 65%, 2500 RPM. Calculated reserve fuel is 30% of the trip fue
a 91 US gallons.
b 86 US gallons.
c 76 US gallons.
d 118 US gallons.
69 You are to determine the maximum fuel load which can be carried in the following
id 5541 conditions : - dry operating mass : 2800 kg - trip fuel : 300 kg - payload : 400 kg maximum take-off mass : 4200 kg - maximum landing mass : 3700 kg
a 1000 kg
b 800 kg
c 700 kg
d 500 kg

33.01.02.05. Completion of pre-flight portion of fuel log

70 Given:maximum allowable take-off mass 64400 kg maximum landing mass 56 id 2043 200 kg maximum zero fuel mass 53000 kg dry operating mass 35500 kg estimated load 14500 kg estimated trip fuel 4900 kg minimum take-off fuel 7400 kg Find the maximum allowable take-off fuel:
a 8600 kg
b 11400 kg
c 14400 kg
d 11100 kg

33.01.03. Flight monitoring and in-flight replanning

33.01.03.01. In-flight fuel computations

71 During an IFR flight in a Beech Bonanza the fuel indicators show that the remaining
id 1396 amount of fuel is 100 lbs after 38 minutes. The total amount of fuel at departure was 160 lbs . For the alternate fuel, 30 lbs is necessary. The planned fuel for taxi is 13 lbs . Final reserve fuel is estimated at 50 lbs . If the fuel flow remains the same, how many minutes can be flown to the destination wi
a 12 minutes.
b 63 minutes.
c 44 minutes.
d 4 minutes.
72 For a planned flight the calculated fuel is as follows: Flight time: 3h06min The id 2536 reserve fuel, at any time, should not be less than 30% of the remaining trip fuel. Taxi fuel: 8 kg Block fuel: 118 kg How much fuel should remain after 2 hours flight time?
a 27 kg trip fuel and 12 kg reserve fuel.
b 39 kg trip fuel and 12 kg reserve fuel.
c 30 kg trip fuel and 9 kg reserve fuel.
d 39 kg trip fuel and no reserve fuel.
73 For a planned flight the calculated fuel is as follows: Flight time: 2h42min The
id 2537 reserve fuel, at any time, should not be less than 30% of the remaining trip fuel. Taxi fuel: 9 kg Block fuel: 136 kg How much fuel should remain after 2 hours flight time?
a 33 kg trip fuel and no reserve fuel.
b 33 kg trip fuel and 10 kg reserve fuel.
c 23 kg trip fuel and 10 kg reserve fuel.
d 25 kg trip fuel and 8 kg reserve fuel.

33.01.03.02. Calculation of actual consumption rate

74	A VFR flight planned for a Piper Seneca III. At a navigational checkpoint the

id 2042 remaining usable fuel in tanks is 60 US gallons. The alternate fuel is 12 US gallons. According to the flight plan the remaining flight time is 1 h 35 min . Calculate the highest rate of consumption possible for the rest of the trip.
a 37.9 US gallons/hour
b 33.0 US gallons/hour
c 30.3 US gallons/hour

d 21.3 US gallons/hour

75 A multi engine piston aeroplane is on an IFR flight. The fuel plan gives a trip fuel of
id 206465 US gallons. The alternate fuel, final reserve included, is 17 US gallons. Contingency fuel is 5% of the trip fuel. The usable fuel at departure is 93 US gallons. At a certain moment the fuel consumed according to the fuel gauges is 40 US gallons and the distance flown is half of the total distance.
a At the destination there will still be 30 US gallons in the tanks
b The remaining fuel is not sufficient to reach the destination with reserves intact
c At departure the reserve fuel was 28 US gallons
d At destination the required reserves remain intact.

76 The fuel burn of an aircraft turbine engine is $220 \mathrm{l} / \mathrm{h}$ with a fuel density of 0,80 . If the id 5527 density is 0,75 , the fuel burn will be:
a $235 \mathrm{l} / \mathrm{h}$
b 206 I/h
c $220 \mathrm{l} / \mathrm{h}$
d $176 \mathrm{l} / \mathrm{h}$

33.01.03.04. In-flight replanning in case of problems

77 Minimum planned take-off fuel is 160 kg (30% total reserve fuel is included).
id 2538 Assume the groundspeed on this trip is constant. When the aeroplane has done half the distance the remaining fuel is 70 kg . Is diversion to a nearby alternate necessary?
a Diversion to a nearby alternate is not necessary, because it is allowed to calculate without reserve fuel.
b Diversion to a nearby alternate is not necessary, because the reserve fuel has not been used completely.
c Diversion to a nearby alternate is necessary, because the remaining fuel is not sufficient.
d Diversion to a nearby alternate is necessary, unless the captain decides to continue on his own responsability.
78 After flying for 16 min at 100 kt TAS with a 20 kt tail wind component, you have to id 5542 return to the airfield of departure. You will arrive after:
a 20 min
b 24 min
c 10 min 40 sec
d 16 min

33.01.04. Radio communication and navigation aids

33.01.04.01. Communication frequencies

| 79 | During a flight at night a position has to be reported to ATC. The aeroplane is at a |
| :--- | :--- | id 1393 distance of 750 NM from the groundstation and at flight level 350 . The frequency to be used is:

a 5649 kHz .
b 11336 kHz .
c 17286 kHz .
d 123.9 MHz .
80 Give the name and frequency of the Flight Information Service for an aeroplane in
id 4394 position ($47^{\circ} 59^{\prime} \mathrm{N}, 010^{\circ} 14^{\prime} \mathrm{E}$).
a MÜNCHEN INFORMATION 120.65 MHz
b MÜNCHEN INFORMATION 126.95 MHz
c FRANKFURT INFORMATION 128.95 MHz
d MEMMINGEN INFORMATION 122.1 MHz
$\mathbf{8 1}$ Give the frequency of STUTTGART ATIS.
id 4398
a 135.775 MHz
b 126.125 MHz
c 112.250 MHZ
d 126.125 kHz

82 Give the frequency of ZÜRICH VOLMET.
id 4570
a 128.525 MHz
b 127.20 kHz
c 127.20 MHz
d 118.10 MHz

33.01.04.02. Radio navigation and approach aids

$\mathbf{8 3}$ Refer to the appropriate chart in the Student Pilot Route Manual: Which navigation
id 4571 aid is located in position $48^{\circ} 55^{\prime} \mathrm{N}, 009^{\circ} 20^{\prime} \mathrm{E}$?
a VOR
b NDB
c TACAN
d VOR/DME
84 Refer to the appropriate chart in the Student Pilot Route Manual: Which navigation id 4572 aid is located in position $48^{\circ} 23^{\prime} \mathrm{N}, 008^{\circ} 39^{\prime} \mathrm{E}$?
a VOR
b NDB
c VOR/DME
d VORTAC
85 Refer to the appropriate chart in the Student Pilot Route Manual: Which navigation
id 4573 aid is located in position $48^{\circ} 30^{\prime} \mathrm{N}, 007^{\circ} 34^{\prime} \mathrm{E}$?
a VOR/DME
b NDB
c VOR
d TACAN

33.02. ICAO ATC FLIGHT PLAN

33.02.01. Types of flight plan

33.02.01.01. ICAO flight plan

86 A repetitive flight plan (RPL) is filed for a scheduled flight: Paris-Orly to Angouleme,
id 68 Paris Orly as alternate. Following heavy snow falls, Angouleme airport will be closed at the expected time of arrival. The airline decides before departure to plan a re-routing of that flight to Limoges.
a The pilot-in-command must advise ATC of his intention to divert to Limoges at least 15 minutes before the planned time of arrival.
b The airline's "Operations " Department has to tansmit a change in the RPL at the ATC office, at least half an hour before the planned time of departure.
c It is not possible to plan another destination and the flight has to be simply cancelled that day (scheduled flight and not chartered).
d The RPL must be cancelled for that day and a specific flight plan has to be filed.
87 Which of the following statements regarding filing a flight plan is correct?
id 957
a A flying college can file repetitive flight plan for VFR flights.
b Any flight plan should be filed at least 10 minutes before departure.
c A flight plan should be filed when a national FIR boundary will be crossed.
d In case of flow control the flight plan should be filed at least three hours in advance of the time of departure.

88	A "current flight plan" is a:
id 1399	

a flight plan in the course of which radio communication should be practised between aeroplane and ATC.
b filed flight plan.
c flight plan with the correct time of departure.

d filed flight plan with amendments and clearance included.

89 An aircraft has a maximum certificated take-off mass of 137000 kg but is operating
id 5650 at take-off mass 135000 kg . In Item 9 of the ATS flight plan its wake turbulence category is :
a medium plus " $\mathrm{M}+$ "
b heavy/medium " H / M "
c medium "M"
d heavy " H "

90	For the purposes of Item 9 (Wake turbulence category) of the ATS flight plan, an

id 5651 aircraft with a maximum certificated take-off mass of 62000 kg is :
a unclassified "U"
b heavy "H"
c light "L"
d medium "M"

91 When completing an ATS flight plan, an elapsed time (Item 16) of 1 hour 55
id 5654 minutes should be entered as:
a 0115
b 1 H 55
c 115 M
d 0155
92 When completing an ATS flight plan for a European destination, clock times are to
id 5655 be expressed in:
a Central European Time
b Local mean time
c local standard time
d UTC
93 In the ATS flight plan, for a non-scheduled flight which of the following letters
id 5656 schould be entered in Item 8 (Type of Flight) :
a N
b N/S
c G
d X
94 In the ATS flight plan item 15, it is necessary to enter any point at which a change id 5658 of cruising speed takes place. For this purpose a "change of speed" is defined as :
a 20 km per hour or 0.1 Mach or more
b 10% TAS or 0.05 Mach or more
c 5% TAS or 0.01 Mach or more
d 20 knots or 0.05 Mach or more
95 In the ATS flight plan item 15, when entering a route for which standard departure id 5659 (SID) and standard arrival (STAR) procedures exist:
a both should be entered in the ATS plan where appropriate
b SIDs should be entered but not STARs
c STARS should be entered but not SIDs
d neither SID nor STAR should be entered
96 When completing an ATS flight plan for a flight commencing under IFR but possibly
id 5662 changing to VFR, the letters entered in Item 8 (FLIGHT RULES) would be :
a X
b N / S
c G
d Y
97 In the ATS flight plan Item 19, if the number of passengers to be carried is not
id 5663 known when the plan is ready for filing:
a the plan should be filed with the relevant box blank
b "TBN" (to be notified) may be entered in the relevant box
c an estimate may be entered but that number may not subsequently be exceeded
d the plan may not be filed until the information is available

98 In an ATS flight plan Item 15, in order to define a position as a bearing and distance id 5664 from a VOR, the group of figures should consist of :
a VOR ident, magnetic bearing and distance in kilometres
b VOR ident, true bearing and distance in kilometres
c VOR ident, magnetic bearing and distance in nautical miles
d full name of VOR, true bearing and distance in kilometres
99 An aircraft plans to depart London at 1000 UTC and arrive at Munich (EDDM) at id 56651215 UTC. In the ATS flight plan Item 16 (destination/EET) should be entered with :
a EDDM 1215
b EDDM 1415
c EDDM 0215
d EDDM 2 H 15
100 In an ATS flight plan Item 15 (route), in terms of latitude and longitude, a significant id 5666 point at $41^{\circ} 35^{\prime}$ north $4^{\circ} 15^{\prime}$ east should be entered as :
a N04135E0415
b $41^{\circ} 35^{\prime} \mathrm{N} 04^{\circ} 15^{\prime} \mathrm{E}$
c 4135 N 00415 E
d N4135 E00415
101 In an ATS flight plan, Item 15 (route), a cruising pressure altitude of 32000 feet id 5667 would be entered as:
a FL320
b F320
c S3200
d 32000
102 When an ATS flight plan is submitted for a flight outside designated ATS routes, id 5668 points included in Item 15 (route) should not normally be at intervals of more than:
a 20 minutes flying time or 150 km
b 30 minutes flying time or $370 \mathbf{k m}$
c 15 minutes flying time or 100 km
d 1 hour flying time or 500 km
$\mathbf{1 0 3}$ In the ATS flight plan Item 15, a cruising speed of 470 knots will be entered as :
id 5669
a N470
b KN470
c 0470 K
d N0470
104 In the ATS flight plan Item 13, in a flight plan submitted before departure, the id 5670 departure time entered is the:

a estimated off-block time

b estimated time over the first point en route
c estimated take-off time
d allocated slot time

105 In the ATS flight plan Item 15 (Cruising speed), when not expressed as a Mach id 5671 number, cruising speed is expressed as:
a IAS
b TAS
c CAS
d Groundspeed
106 For a repetitive flight plan (RPL) to be used, flights must take place on a regular id 5672 basis on at least:
a 20 occasions
b 10 occasions
c 30 occasions
d 50 occasions
107 In the ATS flight plan Item 10 (equipment), the letter to indicate the carriage of a id 5673 serviceable transponder - mode A (4 digits-4096 codes) and mode C , is :
a B
b C
c A
d P

33.02.02. Completing the flight plan

33.02.02.01. Information for flight plan obtained from

108 An aeroplane is flying from an airport to another. In cruise, the calibrated airspeed
id 67 is 150 kt , true airspeed 180 kt , average groundspeed 210 kt , the speed box on the filed flight plan shall be filled as follows:
a $K 0150$
b K0210
c K0180
d N0180
109 On a flight plan you are required to indicate in the box marked "speed" the planned id 554 speed for the first part of the cruise or for the entire cruise. This speed is:
a The estimated ground speed
b The equivalent airspeed
c The indicated airspeed
d The true airspeed
110 The navigation plan reads: Trip fuel: 100 kg Flight time: 1 h 35 min Taxi fuel: 3 kg
id 2534 Block fuel: 181 kg The endurance on the ICAO flight plan should read:
a 1 h 35 min
b 2 h 49 min
c 2 h 04 min
d 2 h 52 min

111 The navigation plan reads: Trip fuel: 136 kg Flight time: 2h45min Calculated id 2535 reserve fuel: 30% of trip fuel Fuel in tank is minimum (no extra fuel on board) Taxi fuel: 3 kg The endurance on the ICAO flight plan should read:
a 2 h 49 min
b $2 n 45$ min
c 3 h 34 min
d 3h38min
112 If your destination airport has no ICAO indicator, in the appropriate box of your flight id 5514 plan, you write:
a //I/
b AAAA
c $X X X$
d ZIZ
113 The cruising speed to write in the appropriate box of a flight plan is:
id 5525
a ground speed
b indicated air speed
c true air speed
d calibrated air speed
114 In the appropriate box of a flight plan, for endurance, one must indicate the time id 5526 corresponding to:
a the total usable fuel on board
b the required fuel for the flight
c the required fuel for the flight plus the alternate and 45 minutes
d the total usable fuel on board minus reserve fuel
115 The maximum permissible take-off mass of an aircraft for the L wake turbulence id 5529 category on a flight plan is:
a 7000 kg
b 2700 kg
c 5700 kg
d 10000 kg
116 In the appropriate box of a flight plan form, concerning equipment, the letter to be id 5530 used to indicate that the aircraft is equipped with a mode A 4096 codes transponder with altitude reporting capability is :
a S
b P
c C
d A
117 When a pilot fills in a flight plan, he must indicate the wake turbulence category.
id 5543 This category is a function of which mass?
a actual take-off mass
b estimated take-off mass
c maximum certified landing mass
d maximum certified take-off mass

118 In the appropriate box of a flight plan form, corresponding to the estimated time of id 5545 departure, the time indicated is that at which the aircraft intends to :
a start-up
b take-off
c go off blocks
d pass the departure beacon

33.02.03. Filing the flight plan

33.02.03.01. Procedures for filing

119 You have a flight plan IFR from Amsterdam to London. In the flight plan it is noted id 959 that you will deviate from the ATS route passing the FIR boundary Amsterdam/London. The airway clearance reads: Cleared to London via flight planned route. Which of the following statements is correct?
a The route according to the flight plan is accepted.
b The filed deviation is not accepted.
c You will get a separate clearance for the deviation.
d It is not allowed to file such a flight plan.
120 How many hours in advance of departure time should a flight plan be filed in the id 1398 case of flights into areas subject to air traffic flow management (ATFM)?
a 1:00 hour.
b 3:00 hours.
c 0:30 hours.
d 0:10 hours.
121 For a flight plan filed before the flight, the indicated time of departure is:
id 5524
a the estimated off-block time
b the time at which the flight plan is filed.
c the time of take-off.
d the time overhead the first reporting point after take-off.
122 It is possible, in flight, to: 1 - file an IFR flight plan 2 - modify an active IFR or VFR
id 5536 flight plan 3 - cancel an active VFR flight plan 4 - close an active VFR flight plan Which of the following combinations contains all of the correct statements?
a 2-3-4
b 1-2-4
c 1-2-3
d 1-2-3-4
123 The planned departure time from the parking area is 1815 UTC The estimated take-
id 5544 off time is 1825 UTC The IFR flight plan must be filed with ATC at the latest at:
a 1755 UTC
b 1725 UTC
c 1745 UTC
d 1715 UTC

33.02.03.03. Requirements of the State

124 From the options given below select those flights which require flight plan
id 69 notification: I - Any Public Transport flight. 2 - Any IFR flight 3 - Any flight which is to be carried out in regions which are designated to ease the provision of the Alerting Service or the operations of Search and Rescue. 4 - Any cross-border flights 5 Any flight which involves overflying
a $1+5$
b 2+4
c $1+2+3$
d $3+4+5$

33.02.04. Closing the flight plan

33.02.04.01. Responsibilities and procedures

125 If a pilot lands at an aerodrome other than the destination aerodrome specified in id 66 the flight plan, he must ensure that the ATS unit at the destination aerodrome is informed within a certain number of minutes of his planned ETA at destination. This number of minutes is:
a 10
b 15
c 30
d 45
33.02.05. Adherence to flight plan
33.02.05.01. Tolerances allowed by the State

126 When an ATS flight plan has been submitted for a controlled flight, the flight plan
id 5660 should be amended or cancelled in the event of the off-block time being delayed by :
a 90 minutes or more
b 45 minutes or more
c 60 minutes or more
d $\mathbf{3 0}$ minutes or more
33.02.05.02. In-flight amendment of flight plan
$\mathbf{1 2 7}$ An aeroplane is on an IFR flight. The flight is to be changed from IFR to VFR. Is it id 958 possible?
a Yes, the pilot in command must inform ATC using the phrase "cancelling my IFR flight".
b No, you have to remain IFR in accordance to the filed flight plan.
c No, only ATC can order you to do this.
d Yes, but only with permission from ATC.
128 During an IFR flight TAS and time appear to deviate from the data in the flight plan.
id 1397 The minimum deviations, that should be reported to ATC in order to conform to PANS-RAC, are:
a TAS 5 kt and time 5 minutes.
b TAS 3% and time 3 minutes.
c TAS 5% and time 3 minutes.
d TAS 10 kt and time 2 minutes.

33.03. PRACTICAL FLIGHT PLANNING

33.03.01. Chart preparation

33.03.01.01. Plot tracks and measure directions

129 Flying from SAULGAU airport ($\left.48^{\circ} 02^{\prime} \mathrm{N}, 009^{\circ} 31^{\prime} \mathrm{E}\right)$ to ALTENSTADT airport id 4395 ($\left.47^{\circ} 50^{\prime} \mathrm{N}, 010^{\circ} 53^{\prime} \mathrm{E}\right)$. Find magnetic course and the distance.
a Magnetic course 102°, distance 82 NM
b Magnetic course 282°, distance 56 NM
c Magnetic course 102°, distance 56 NM
d Magnetic course 078°, distance 82 NM
130 Flying from ERBACH airport ($\left.48^{\circ} 21^{\prime} \mathrm{N}, 009^{\circ} 55^{\prime} \mathrm{E}\right)$ to POLTRINGEN airport
id 4396 ($\left.48^{\circ} 33^{\prime} \mathrm{N}, 008^{\circ} 57^{\prime} \mathrm{E}\right)$. Find magnetic course and the distance.
a Magnetic course 108°, distance 60 NM
b Magnetic course 252°, distance 41 NM
c Magnetic course $\mathbf{2 8 7}^{\circ}$, distance 41 NM
d Magnetic course 287°, distance 60 NM
131 Flying from Position SIGMARINGEN ($\left.48^{\circ} 05^{\prime} \mathrm{N}, 009^{\circ} 13^{\prime} \mathrm{E}\right)$ to BIBERACH airport id 4397 ($\left.48^{\circ} 07^{\prime} \mathrm{N}, 009^{\circ} 46^{\prime} \mathrm{E}\right)$. Find magnetic course and the distance.
a Magnetic course 086°, distance 32 NM
b Magnetic course 093°, distance 41 NM
c Magnetic course 267°, distance 22 NM
d Magnetic course 086°, distance 22 NM
132 On airway PTS P from Vigra ($\left.62^{\circ} 334 \mathrm{~N} 006^{\circ} 02^{\prime} \mathrm{E}\right)$, the initial great circle grid course id 5725 is:
a 347
b 353
c 344
d 350
133 On a direct great circle course from Shannon (5243' N 008º53'W) to Gander id 5726 ($48^{\circ} 54^{\prime} \mathrm{N} 054^{\circ} 32^{\prime} \mathrm{W}$), the (a) average true course, and (b) distance, are :
a a) 244° (b) 1520 NM
b a) 281° (b) 2730 NM
c (a) $\mathbf{2 6 2 ^ { \circ }}$ (b) $\mathbf{1 7 2 0} \mathbf{N M}$
d a) 281° (b) 1877 NM
134 The initial great circle true course from Keflavik ($64^{\circ} 00^{\prime} \mathrm{N} 022^{\circ} 36^{\prime}$ W) to Vigra id $5727\left(62^{\circ} 33^{\prime} \mathrm{N} 006^{\circ} 02^{\prime} \mathrm{E}\right)$ measures 084°. On a polar enroute chart where the grid is aligned with the 000° meridian the initial grid course will be :
a 096°
b 080°
c 106°
d 066°

135 The initial great circle course from position $A\left(80^{\circ} 00^{\prime} N 170^{\circ} 00^{\prime} E\right)$ to position B id $5728\left(75^{\circ} 00^{\prime} \mathrm{N} 011^{\circ} \mathrm{E}\right)$ is $177^{\circ}(\mathrm{G})$. The final grid course at position B will be :
a $172^{\circ}(\mathrm{G})$
b $194^{\circ}(\mathrm{G})$
c $177^{\circ}(\mathrm{G})$
d $353^{\circ}(\mathrm{G})$

33.03.02. Navigation plans

33.03.02.01. Completing the navigation plan using:

136 A descent is planned from 7500 ft MSL so as to arrive at 1000 ft MSL 6 NM from a
id 2207 VORTAC. With a GS of 156 kts and a rate of descent of $800 \mathrm{ft} / \mathrm{min}$. The distance from the VORTAC when descent is started is :
a $15,0 \mathrm{NM}$
b 27,1 NM
c $11,7 \mathrm{NM}$
d 30,2 NM
137 A sector distance is 450 NM long. The TAS is 460 kt . The wind component is 50 kt id 2768 tailwind. What is the still air distance?
a 414 Nautical Air Miles (NAM)
b 499 Nautical Air Miles (NAM)
c 406 Nautical Air Miles (NAM)
d 511 Nautical Air Miles (NAM)
138 The still air distance in the climb is 189 Nautical Air Miles (NAM) and time 30
id 2770 minutes. What ground distance would be covered in a 30 kt head wind?
a 188 NM
b 203 NM
c 174 NM
d 193 NM

33.03.03. Simple fuel plans

33.03.03.01. Preparation of fuel logs

139 (For this question use Flight Planning Manual MEP 1 Figure 3.2) A flight is to be
id 2065 made in a multi engine piston aeroplane (MEP1). The cruising level will be 11000 ft . The outside air temperature at FL is $-15^{\circ} \mathrm{C}$. The usable fuel is 123 US gallons. The power is set to economic cruise. Find the range in NM with 45 min reserve fuel at 45 \% power.
a 752 NM
b 852 NM
c 610 NM
d 602 NM
140 (For this Question use Flight Planning \& Monitoring MEP1 Fig. 3.5) Given: FL 75 id 2564 Lean mixture Economy Powersetting Find: Endurance in hours with no reserve
a 06:12
b 05:01
c 06:06
d 05:11

141 (For this Question use Flight Planning \& Monitoring SEP1) A flight has to be made with the single engine sample aeroplane. For the fuel calculation allow 10 lbs fuel for start up and taxi, 3 minutes and 1 gallon of additional fuel to allow for the climb, 10 minutes and no fuel correction for the descent. Planned flight time (overhead to overhead) is 03 hours and 12 minutes. Res
a 283 lbs
b 268 lbs
c 252 lbs
d 215 lbs
142 (For this Question use Flight Planning \& Monitoring SEP1) A flight has to be made with the single engine sample aeroplane. For the fuel calculation allow 10 lbs fuel for start up and taxi, 3 minutes and 1 gallon of additional fuel to allow for the climb, 10 minutes and no fuel correction for the descent. Planned flight time (overhead to overhead) is 02 hours and 37 minutes. Res
a 250 lbs
b 208 lbs
c 270 lbs
d 265 lbs

33.04. IFR (AIRWAYS) FLIGHT PLANNING

33.04.01. Meteorological considerations

143 Which describes the worst hazard, if any, that could be associated with the type of id 5210 feature at $37.7^{\circ} \mathrm{N} 015^{\circ} \mathrm{E}$?
a Reduced visibility
b Severe attenuation in the $\mathrm{HF} R T$ band
c Engine flame out and windscreen damage
d There is no hazard
144 The surface weather system over England $\left(53^{\circ} \mathrm{N} 002^{\circ} \mathrm{W}\right)$ is
id 5211
a a warm front moving southeast
b a depression moving north
c an occluded front moving east
d a cold front moving east
145 In the vicinity of PARIS $\left(49^{\circ} \mathrm{N} 003^{\circ} \mathrm{E}\right)$ the tropopause is at about
id 5212
a FL350
b FL340
c FL400
d FL380
146 Which describes the maximum intensity of icing, if any, at FL110 in the vicinity of id 5213 CASABLANCA $\left(33^{\circ} \mathrm{N} 008^{\circ} \mathrm{W}\right)$?
a Light
b Moderate
c Severe
d Nil
147 Which best describes the significant cloud, if any, forecast for the area southwest id 5214 of $\mathrm{BODO}\left(67^{\circ} \mathrm{N} 014^{\circ} \mathrm{E}\right)$
a Nil
b 5 to 7 oktas AC, base FL100, tops FL180
c 3 to 7 oktas AC, base below FL100, tops FL180
d 5 to 7 oktas AC, base below FL100, tops FL180
148 Which best describes be maximum intensity of icing, if any, at FL150 in the vicinity
id 5215 (west)of BUCHAREST ($45^{\circ} \mathrm{N} 026^{\circ} \mathrm{E}$) ?
a Nil
b Light
c Severe
d Moderate

```
149 Which best describes the maximum intensity of CAT, if any, forecast for FL330
id 5216 over BENGHAZI ( \(32^{\circ} \mathrm{N} 020^{\circ} \mathrm{E}\) ) ?
a Nil
b Light
c Moderate
d Severe
```

$\mathbf{1 5 0}$ The maximum wind velocity (${ }^{\circ} / \mathrm{kt}$) shown in the vicinity of $\mathrm{MUNICH}\left(48^{\circ} \mathrm{N} 012^{\circ} \mathrm{E}\right)$ is :
id 5217
a $260 / 130$
b 080/130
c $260 / 160$
d 290/230

$\mathbf{1 5 1}$	The wind velocity over GERMANY is
id 5218	

a 130 kt at FL 320 maximum velocity not shown on chart
b 130 kt at FL 340 maximum velocity not shown on chart
c a maximum of 230 kt at FL 320

d a maximum of 130 kt at FL320

152 The wind direction and velocity (${ }^{\circ} / \mathrm{kt}$) at $50^{\circ} \mathrm{N} 040^{\circ} \mathrm{E}$ is:
id 5219
a $170 / 35$
b $350 / 35$
c $280 / 20$
d 300/35
153 The wind direction and velocity (${ }^{\circ} / \mathrm{kt}$) at $60^{\circ} \mathrm{N} 015^{\circ} \mathrm{E}$ is
id 5220
a 200/20
b 020/20
c 210/25
d 030/25
154 What is the mean temperature deviation $\left({ }^{\circ} \mathrm{C}\right)$ from the ISA over $50^{\circ} \mathrm{N} 010^{\circ} \mathrm{W}$?
id 5222
a +/-0
b +15
c +9
d -5
155 The wind direction and velocity $\left({ }^{\circ} / \mathrm{kt}\right)$ at $40^{\circ} \mathrm{N} 040^{\circ} \mathrm{E}$ is
id 5223
a 280/20
b 330/60
c 150/20
d 330/20

156	$\begin{array}{l}\text { A METAR reads: SA1430 35002KY 7000 SKC 21/03 Q1024 = Which of the } \\ \text { id } 5228\end{array}$
following information is contained in this METAR?	

a temperature/dewpoint
b runway in use
c day/month
d period of validity
157 What mean temperature $\left({ }^{\circ} \mathrm{C}\right)$ is likely on a course of $360^{\circ}(\mathrm{T})$ from $40^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}$ at id $5229-040^{\circ} \mathrm{E}$?
a - 19
b - 23
c - 21
d -56,5
158 Which of the following flight levels, if any, is forecast to be clear of significant cloud, id 5230 icing, turbulence, and CAT along the marked route from SHANNON $\left(53^{\circ} \mathrm{N} 10^{\circ} \mathrm{W}\right)$ to BERLIN ($53^{\circ} \mathrm{N} 13^{\circ} \mathrm{E}$) ?
a FL250
b FL210
c FL290
d None
159 The W/V ($\left.{ }^{\circ} / \mathrm{kt}\right)$ at $50^{\circ} \mathrm{N} 015^{\circ} \mathrm{W}$ is:
id 5686
a 320/40
b $140 / 40$
c $320 / 25$
d 140/25
160 What mean temperature $\left({ }^{\circ} \mathrm{C}\right)$ is likely on a true course of 270° from $025^{\circ} \mathrm{E}$ to id $5687-010^{\circ} \mathrm{E}$ at $45^{\circ} \mathrm{N}$?
a -5
b - 25
c - 15
d -30
161 The W/V ($\left.{ }^{\circ} / k t\right)$ at $40^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}$ is
id 5688
a 170/60
b $334 / 40$
c $135 / 40$
d 350/60
162 What is the temperature deviation $\left({ }^{\circ} \mathrm{C}\right)$ from ISA over $50^{\circ} \mathrm{N} 010^{\circ} \mathrm{E}$?
id 5689
a -55
b +8
c +2
d -8

$\mathbf{1 6 3}$	The $\mathrm{W} / \mathrm{V}\left({ }^{\circ} / \mathrm{kt}\right)$ at $60^{\circ} \mathrm{N} 015^{\circ} \mathrm{W}$ is
id 5690	

a 250/10
b $070 / 10$
c $270 / 10$
d 090/10
164 The approximate mean wind component (kt) along true course 180° from $50^{\circ} \mathrm{N}$ to id $5691 \quad 40^{\circ} \mathrm{N}$ at $005^{\circ} \mathrm{W}$ is
a headwind 20 kt
b tail wind 25 kt
c tail wind 15 kt
d headwind 15 kt
165 Which best describes the maximum intensity of icing, if any, at FL160 in the vicinity id 5693 of BUDAPEST?
a moderate
b severe
c light
d nil
166 Which describes the intensity of turbulence, if any, at FL 150 in the vicinity of id 5694 ALGIERS?
a moderate
b moderate or severe
c light
d nil
167 The surface system west of PARIS is a
id 5695
a cold front moving southeast
b warm front moving north
c stationary occluded front
d cold front moving west
168 In the vicinity of GLASGOW the tropopause is at about FL
id 5696
a 300
b 270
c 250
d 290

169	Which best describes the significant cloud forecast over TOULOUSE ($44^{\circ} \mathrm{N} 001^{\circ} \mathrm{E}$)
d 5697	?

a broken/overcast layer, base below FL100 tops FL180, moderate icing

b well separated CB base FL100 tops to FL 180
c broken/overcast layer, base below FL100 tops FL180, severe icing
d broken/overcast layer, base below FL100 tops FL180, severe turbulence

```
170 Which describes the maximum intensity of turbulence, if any, forecast for FL260
id 5698 over TOULOUSE ( \(44^{\circ} \mathrm{N} 001^{\circ} \mathrm{E}\) ) ?
a moderate
b severe
c light
d nil
```

171 Over LONDON ($51^{\circ} \mathrm{N} 000^{\circ} \mathrm{E} / \mathrm{W}$), the lowest FL listed which is unaffected by CAT is:
id 5700
a 360
b 390
c 250
d 220

33.04.02. Selection of routes

33.04.02.01. Preferred airways routings

172 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4 \& 5)$ An aeroplane has to fly from id 2054 Salzburg ($48^{\circ} 00.2^{\prime} \mathrm{N} 012^{\circ} 53.6^{\prime} \mathrm{E}$) to Klagenfurt ($46^{\circ} 37.5^{\prime} \mathrm{N} 014^{\circ} 33.8^{\prime} \mathrm{E}$). Which statement is correct?
a The airway UB5 is closed for southbound traffic above FL 200.
b The airway UB5 cannot be used, there is one way traffic to the north.
c The airway UB5 can be used for flights to/from Klagenfurt and Salzburg.
d The airway UB5 is closed in this direction except during the weekends.
173 Of the following, the preferred airways routing from FRANKFURT FFM 114.2
id $5049\left(50^{\circ} 03^{\prime} \mathrm{N} 008^{\circ} 38^{\prime} \mathrm{E}\right)$ to KOKSY ($51^{\circ} 06^{\prime} \mathrm{N} 002^{\circ} 39^{\prime} \mathrm{E}$) above FL245, on a Wednesday is :
a UR10 NTM UB6 BUB ATS
b UG1
c UB69 DINKI UB6 BUB ATS
d UG108 SPI UG1
174 Of the following, the preferred airways routing from MARTIGUES MTG 117.3
id $5050\left(43^{\circ} 23^{\prime} \mathrm{N} 005^{\circ} 05^{\prime} \mathrm{E}\right)$ to ST PREX SPR $113.9\left(46^{\circ} 28^{\prime} \mathrm{N} 006^{\circ} 27^{\prime} \mathrm{E}\right)$ above FL245 is :
a UB28
b UB284 VILAR UB28
c UB282 DGN UB46
d UA6 LSA UG52
175 Of the following, the preferred airways routing from AMBOISE AMB $113.7\left(47^{\circ} 26^{\prime} \mathrm{N}\right.$ id $\left.5051001^{\circ} 04^{\prime} \mathrm{E}\right)$ to AGEN AGN ($\left.43^{\circ} 53^{\circ} \mathrm{N} 000^{\circ} 52^{\prime} \mathrm{E}\right)$ above FL200 is:
a UH40 FOUCO UH20 PERIC UA34
b UB19 POI UB195
c UA34
d UB19 CGC UA25

176 Of the following, the preferred airways routing from CLACTON CLN 114.55 id 5052 ($51^{\circ} 51^{\prime} \mathrm{N} 001^{\circ} 09^{\prime} \mathrm{E}$) to DINARD DIN 114.3 ($48^{\circ} 35^{\prime} \mathrm{N} 002^{\circ} 05^{\prime} \mathrm{W}$) above FL245 is:
a UB29 LAM UR1 ORTAC UR14
b UR12 MID UA47 DPE UA475 SOKMU UH111
c UR12 MID UR8 SAM UB11 BARLU UW115
d UB29 LAM UR1 MID UA34 LILAN UR9

33.04.02.02. Extraction of tracks and distances

177 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4$) An aeroplane has to fly from
id 2052 Abbeville ($50^{\circ} 08.1^{\prime} \mathrm{N} 001^{\circ} 51.3^{\prime} \mathrm{E}$) to Biggin ($51^{\circ} 19.8^{\prime} \mathrm{N} 000^{\circ} 00.2^{\prime} \mathrm{E}$). What is the distance of this leg?
a 62NM
b 38 NM
c 64NM
d 100 NM
178 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4)$ An aeroplane has to fly from id 2053 Abbeville ($50^{\circ} 08.1^{\prime} \mathrm{N} 001^{\circ} 51.3^{\prime} \mathrm{E}$) to Biggin ($51^{\circ} 19.8^{\prime} \mathrm{N} 00^{\circ} 00.2^{\prime} \mathrm{E}$). At Biggin you can find : 141°. This is :
a The average true course of the great circle from Biggin to Abbeville.
b The magnetic course to fly inbound to Biggin.
c The magnetic great circle course from Biggin to Abbeville.
d The radial, referenced to true north, of Biggin to fly inbound.
179 (For this question use Route Manual chart E(HI)4) Planning a IFR flight from Paris
id 2329 Charles de Gaulle (N49 00.9 E002 36.9) to London Heathrow (N51 29.2 W000 27.9). Find the average true course from Paris to London.
a 330°.
b 142°.
c 322°.
d 343°.
180 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4$) Planning a IFR flight from Paris id 2330 Charles de Gaulle (N49 00.9 E002 36.9) to London Heathrow (N51 29.2 W000 27.9). Determine the preplanning distance by calculating the direct distance plus 10%. The preplanning distance is:
a 188 NM .
b 207 NM.
c 308 NM .
d 218 NM .
181 Planning an IFR-flight from Paris to London (Heathrow). Assume: STAR is BIG 2A,
id 4389 Variation $5^{\circ} \mathrm{W}$, en-route TAS 430 kts , W/V 280/40, descent distance 76NM.
Determine the magnetic course, ground speed and wind correction angle from
ABB 116.6(N50 08.1 E00151.3) to top of descent.
a MC 141°, GS 396 kt , WCA -3°
b MC 141°, GS 396 kt , WCA $+3^{\circ}$
c MC 319°, GS 396 kt , WCA -3°
d MC 321°, GS 396 kt, WCA - 3°

182 Planning an IFR-flight from Paris to London. Determine the distance of the id 4562 departure route ABB 8A.
a 72.5 NM
b 74.5 NM
c 56 NM
d 83 NM
183 Planning an IFR-flight from Paris (Charles de Gaulle) RWY 27 to London. Given:
id 4563 Distance from PARIS Charles-de-Gaulle to top of climb 50 NM Determine the distance from the top of climb (TOC) to ABB 116.6.
a 36.5 NM
b 33 NM
c 24.5 NM
d 31 NM
184 Planning an IFR-flight from Paris to London (Heathrow) via initial approach fix (IAF)
id 4567 Biggin VOR . Given: distance from top of descent (TOD) to Rwy 27R is 76 NM Determine the distance from ABB 116.6 to TOD.
a 49 NM
b 60 NM
c 100 NM
d 55 NM
185 Planning an IFR-flight from Paris Charles de Gaulle to London. SID is ABB 8A.
id 4569 Assume Variation $3^{\circ} \mathrm{W}$, TAS 430 kts , W/V 280/40 and distance to top of climb 50NM Determine the magnetic course, ground speed and wind correction angle from top of climb to ABB 116.6.
a MC 169°, GS 450 kt , WCA $+4^{\circ}$
b MC 169°, GS 414 kt , WCA $+5^{\circ}$
c MC 349°, GS 414 kt , WCA $+5^{\circ}$
d MC 349°, GS 414 kt , WCA - 5°
186 The magnetic course/distance from DINKELSBUHL DKB 117.8 ($49^{\circ} 09^{\prime}$ N010ํ14'E) id 5053 to ERLANGEN ERL 114.9 ($49^{\circ} 39^{\prime}$ N011 $\left.{ }^{\circ} 09^{\prime} E\right)$ on airway UR11 is;
a $050^{\circ} / 47 \mathrm{NM}$
b $230 \% 97 \mathrm{NM}$
c $133^{\circ} / 85 \mathrm{NM}$
d 052\%/97 NM
187 The magnetic course/distance from GROSTENQUIN GTQ 111.25 (4900'N
id $5054006^{\circ} 43^{\prime} \mathrm{E}$) to LINNA ($49^{\circ} 41^{\prime} \mathrm{N} 006^{\circ} 15^{\prime} \mathrm{E}$) on airway R7 is:
a $157{ }^{\circ} / 58 \mathrm{NM}$
b 337\% $/ 46 \mathrm{NM}$
c $337 \% 31 \mathrm{NM}$
d 3370/58 NM
188 The magnetic course/distance from ELBE LBE 115.1 ($53^{\circ} 39^{\prime} \mathrm{N} 009^{\circ} 36^{\prime} \mathrm{E}$) to
id 5055 LUNUD ($54^{\circ} 50^{\prime} \mathrm{N} 009^{\circ} 19^{\prime} \mathrm{E}$) on airway H 12 is:
a $339 \% 80 \mathrm{NM}$
b $352^{\circ} / 96 \mathrm{NM}$
c $352^{\circ} 72 \mathrm{NM}$
d $339 \% 125 \mathrm{NM}$

189 The initial magnetic course/distance from EELDE EEL 112.4 ($53^{\circ} 10^{\prime} \mathrm{N} 006^{\circ} 40^{\prime} \mathrm{E}$) to
id 5056 WELGO $\left(54^{\circ} 18^{\prime} \mathrm{N} 007^{\circ} 25^{\prime} \mathrm{E}\right)$ on airway A 7 is:
a $024^{\circ} / 73 \mathrm{NM}$
b $023^{\circ} / 73 \mathrm{NM}$
c $024 \% 20 \mathrm{NM}$
d 024\% 47 NM
190 The magnetic course/distance from CAMBRAI CMB 112.6 ($50^{\circ} 14^{\prime} \mathrm{N} 003^{\circ} 09^{\prime} \mathrm{E}$) to
id 5057 TALUN ($49^{\circ} 33^{\prime} \mathrm{N} 003^{\circ} 25^{\prime} \mathrm{E}$) on airway B3 is:
a $169 \% / 68 \mathrm{NM}$
b 349% /26 NM
c 169% /42 NM
d 3490/42 NM
191 The magnetic course/distance from WALLASEY WAL 114.1 ($53^{\circ} 23 \mathrm{~N} 003^{\circ} 28^{\prime} \mathrm{W}^{\circ}$ to id 5058 LIFFY $\left(53^{\circ} 29^{\prime} \mathrm{N} 005^{\circ} 30^{\prime} \mathrm{W}\right)$ on airway B1 is:
a $279 \% / 114 \mathrm{NM}$
b 279% /85 NM
c $311 \% / 114 \mathrm{NM}$
d $311 \% 85 \mathrm{NM}$
192 The magnetic course/distance from TRENT TNT 115.7 ($53^{\circ} 03^{\prime} \mathrm{N} 001^{\circ} 40^{\prime} \mathrm{W}$) to
id 5059 WALLASEY WAL $114.1\left(53^{\circ} 23^{\prime} \mathrm{N} 003^{\circ} 08 \mathrm{~W}\right)$ on airway VR3 is:
a $2970 / 70 \mathrm{NM}$
b 1170/57 NM
c 2970/57 NM
d 1170/71 NM
193 The magnetic course/distance from TANGO TGO 112.5 ($48^{\circ} 37^{\prime} \mathrm{N} 009^{\circ} 16^{\prime} \mathrm{E}$) to id 5060 DINKELSBUHL DKB $117.8\left(49^{\circ} 09^{\prime} \mathrm{N} 010^{\circ} 14 \mathrm{E}\right)$ on airway UR11 is:
a 007\% 60 NM
b $052^{\circ} / 50 \mathrm{NM}$
c $105 \% 105 \mathrm{NM}$
d 132\%/43 NM
194 The magnetic course/distance from ST PREX SPR 113.9 ($46^{\circ} 28^{\prime} \mathrm{N} 006^{\circ} 27^{\prime} \mathrm{E}$) to
id 5061 FRIBOURG FRI 115.1 ($46^{\circ} 47^{\prime} \mathrm{N} 007^{\circ} 14^{\prime}$ E) on airway UG60 is:
a $061^{\circ} / 28 \mathrm{NM}$
b $048 \% / 46 \mathrm{NM}$
c $061^{\circ} / 37 \mathrm{NM}$
d 041 $/ 78 \mathrm{NM}$
195 The magnetic course/distance from SALZBURG SBG 113.8 ($48^{\circ} 00^{\prime} \mathrm{N} 012^{\circ} 54^{\prime} \mathrm{E}$) to
id 5062 STAUB ($48^{\circ} 44^{\prime} \mathrm{N} 012^{\circ} 38^{\prime}$ E) on airway UB5 is:
a $346 \% 64 \mathrm{NM}$
b 346여N NM
c $166 \% 64 \mathrm{NM}$
d $346^{\circ} / 43 \mathrm{NM}$

196 The magnetic course/distance from ELBA ELB 114.7 ($42^{\circ} 44^{\prime} \mathrm{N} 010^{\circ} 24^{\prime} \mathrm{E}$) to SPEZI id 5063 ($43^{\circ} 49^{\prime} \mathrm{N} 009^{\circ} 34^{\prime} \mathrm{E}$) on airway UA35 is:
a $332^{\circ} / 118 \mathrm{NM}$
b $152^{\circ} / 42 \mathrm{NM}$
c $322 \% 60 \mathrm{NM}$
d $332^{\circ} / 76 \mathrm{NM}$
197 The magnetic course/distance from LIMOGES LMG 114.5 (45*49'N 00102'E) to
id 5064 CLERMONT FERRAND CMF 117.5 ($45^{\circ} 47^{\prime} \mathrm{N} 003^{\circ} 11^{\prime} \mathrm{E}$) on airway UG22 is:
a $067 \% / 122 \mathrm{NM}$
b 094요 90 NM
c $113 \% / 142 \mathrm{NM}$
d 046\% 70 NM

33.04.02.03. Frequencies and identifiers

198 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4)$ An aeroplane has to fly from id 2056 Salzburg ($48^{\circ} 00.2^{\prime} \mathrm{N} 012^{\circ} 53.6^{\prime} \mathrm{E}$) to Klagenfurt ($\left.46^{\circ} 37.5^{\prime} \mathrm{N} 014^{\circ} 33.8^{\prime} \mathrm{E}\right)$. At Salzburg there is stated on the chart D 113.8 SBG. That means :
a VOR/DME with identification SBG frequency 113.8 MHz can be used.
b Only the DME with identification SBG can be used, for which frequency 113.8 MHz should be tuned, VOR is not available.
c VOR/DME SBG will be deleted in the future and cannot be used for navigation.
d ILS/DME 113.8 MHz of Salzburg airport can be used for navigation.
199 The radio navigation aid at TOPCLIFFE ($54^{\circ} 12^{\prime} \mathrm{N} 001^{\circ} 22^{\prime} \mathrm{W}$) is a:
id 5065
a TACAN only, channel 84, (frequency 113.7 MHz)
b TACAN, channel 84 , and a VOR frequency 113.7 MHz only
c TACAN, channel 84, and an NDB frequency 92 kHz only
d VORTAC, frequency 113.7 MHz , and an NDB frequency 92 kHz

$\mathbf{2 0 0}$	The radio navigation aid serving STRASBOURG ($\left.48^{\circ} 30^{\prime} \mathrm{N} 007^{\circ} 34^{\prime} \mathrm{E}\right)$ is a:
id 5066	
a VOR only, frequency 115.6 MHz	
b VOR/TACAN, frequency 115.6 MHz	
c DME only, channel 115.6	
d TACAN only, frequency 115.6 MHz	

201 The radio navigation aid at ST DIZIER ($\left.48^{\circ} 38 \mathrm{~N} 004^{\circ} 53^{\prime} \mathrm{E}\right)$ is a:
id 5067
a TACAN, channel 87 , and NDB frequency 114.0 kHz
b VOR, frequency 114.0 MHz , and TACAN channel 87
c TACAN, channel 114.0
d TACAN, channel 87 , frequency $114.0 \mathbf{M H z}$
202 The radio navigation aid STAD $\left(51^{\circ} 45^{\prime} \mathrm{N} 004^{\circ} 15^{\prime} \mathrm{E}\right)$ is:
id 5069
a a VOR, frequency 386 MHz
b an NDB, frequency $386 \mathbf{k H z}$
c a VOR/DME, on channel 386
d a TACAN, on channel 386

203	The radio navigation aid at CHIOGGIA ($45^{\circ} 04^{\prime} \mathrm{N} 012^{\circ} 17$ ' E) is a:
id 5070	

a VOR/DME, frequency 114.1 MHz , and NDB frequency 408 kHz
b VOR, frequency 114.1 MHz , and TACAN channel 408
c VOR, frequency 114.1 MHz , and TACAN frequency 408 MHz
d VOR/DME only, frequency 114.1 MHz
204 The radio navigation aid on airway UG4 at LUXEUIL ($47^{\circ} 41^{\prime} \mathrm{N} 006^{\circ} 18^{\prime} \mathrm{E}$) is a:
id 5071
a VOR only, identifier LUL
b VOR, identifier LUL, frequency paired with TACAN identifier LXI
c VOR/DME and NDB, identifier LXI
d VOR/DME only, identifier LUL

$\mathbf{2 0 5}$	The radio navigation aid at BELFAST CITY $\left(54^{\circ} 37^{\prime} \mathrm{N} 005^{\circ} 53^{\prime} \mathrm{W}\right)$ is :
id 5072	

a a TACAN, channel 420
b an NDB, frequency $\mathbf{4 2 0} \mathbf{k H z}$, NOT continuous operation
c a fan marker, frequency 420 kHz
d an NDB, frequency 420 kHz , continuous operation
206 The radio navigation aid at SHANNON (5243'N $008^{\circ} 53^{\prime} \mathrm{W}$) is :
id 5073
a an NDB, frequency 352 kHz
b a VOR/DME, frequency $113.3 \mathbf{M H z}$
c a TACAN, frequency 113.3 kHz
d a VOR only, frequency 113.3 MHz
207 The VOR and TACAN on airway G9 at OSNABRUCK ($52^{\circ} 12^{\prime} \mathrm{N} 008^{\circ} 17$ 'E) are:
id 5074
a NOT frequency paired, and have different identifiers
b frequency paired, and have different identifiers
c NOT frequency paired, and have the same identifier
d frequency paired, and have the same identifier
208 The NDB at DENKO ($52^{\circ} 49$ 'N 015 ${ }^{\circ} 50$ 'E) can be identified on:
id 5075
a Channel 440, BFO on
b Frequency 440 kHz, BFO on
c Channel 440, BFO off
d Frequency 440 kHz , BFO off

209	The airway intersection at RONNEBY ($56^{\circ} 18^{\prime} \mathrm{N} 015^{\circ} 16^{\prime} \mathrm{E}$) is marked by:
id 5076	

a an NDB callsign \mathbf{N}
b a TACAN callsign RON
c a fan marker callsign LP
d an NDB callsign LF

33.04.02.04. Minimum en-route altitudes

210 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4$) An aeroplane has to fly from id 2055 Salzburg ($48^{\circ} 00.2^{\prime} \mathrm{N} 012^{\circ} 53.6^{\prime} \mathrm{E}$) to Klagenfurt ($46^{\circ} 37.5^{\prime} \mathrm{N} 014^{\circ} 33.8^{\prime} \mathrm{E}$). Which statement is correct ?
a The minimum enroute altitude (MEA) is 13400 ft .
b The minimum grid safe altitude on this route is 13400 ft above MSL.
c The minimum sector altitude (MSA) is 13400 ft .
d The minimum obstacle clearance altitude (MOCA) on this route is 10800 ft above MSL.
211 Aeroplanes intending to use airway UR14 should cross GIBSO intersection
id 5081 ($\left.50^{\circ} 45^{\prime} \mathrm{N} 002^{\circ} 30^{\prime} \mathrm{W}\right)$ at or above:
a FL160
b FL140
c FL250
d FL200
212 An airway is marked 3500T 2100 a. This indicates that:
id 5082
a the minimum enroute altitude (MEA) is 3500 ft
b the minimum obstruction clearance altitude (MOCA) is 3500 ft
c the airway base is 3500 ft MSL
d the airway is a low level link route $2100 \mathrm{ft}-3500 \mathrm{ft}$ MSL
$\mathbf{2 1 3}$ The minimum enroute altitude available on airway UR160 from NICE NIZ 112.4 id $5083\left(43^{\circ} 46^{\prime} \mathrm{N} 007^{\circ} 15^{\prime} \mathrm{E}\right)$ to BASTIA BTA $116.2\left(42^{\circ} 32^{\prime} \mathrm{N} 009^{\circ} 29^{\prime} \mathrm{E}\right)$ is:
a FL260
b FL200
c FL210
d FL250
$\mathbf{2 1 4}$ The minimum enroute altitude that can be maintained continuously on airway UA34
id 5084 from WALLASEY WAL $114.1\left(53^{\circ} 23^{\prime} \mathrm{N} 003^{\circ} 08^{\prime} \mathrm{W}\right)$ to MIDHURST MID 114.0 $\left(51^{\circ} 03^{\prime} \mathrm{N} 000^{\circ} 37^{\prime} \mathrm{W}\right)$ is :
a FL250
b FL245
c FL290
d FL330

215	An airway is marked FL 801500 a. This indicates that:
dd 5086	

a 1500 ft MSL is the minimum radio reception altitude (MRA).
b the airway base is 1500 ft MSL .
c the airways extends from 1500 ft MSL to FL 80 .
d the minimum enroute altitude (MEA) is FL 80.

```
216 The minimum enroute altitude (MEA) that can be maintained continuously on
id 5087 airway G4 from JERSEY JSY \(112.2\left(49^{\circ} 13^{\prime} \mathrm{N} 002^{\circ} 03^{\prime} \mathrm{W}\right)\) to LIZAD ( \(49^{\circ} 35^{\prime} \mathrm{N}\)
    \(004^{\circ} 20^{\prime} \mathrm{W}\) ) is :
a 2800 ft MSL
b FL60
c FL140
d 1000 ft MSL
```

217 An airway is marked 5000 2900a. The notation 5000 is the :
id 5088
a base of the airway (AGL)
b maximum authorised altitude (MAA)
c minimum holding altitude (MHA)
d minimum enroute altitude (MEA)
$\mathbf{2 1 8}$ The minimum enroute altitude that can be maintained continuously on airway id $5089 \mathrm{~B} 65 / \mathrm{H} 65$ from DOXON ($55^{\circ} 27^{\prime} \mathrm{N} 018^{\circ} 10^{\prime} \mathrm{E}$) to RONNE ROE $112.0\left(55^{\circ} 04^{\prime} \mathrm{N}\right.$ $014^{\circ} 46^{\prime} \mathrm{E}$) is :
a $1000 f t$
b FL60
c FL100
d 2500 ft

33.04.02.05. Standards Instrument Departures

219 Unless otherwise shown on charts for standard instrument departure the routes id 2066 are given with:
a true course
b magnetic headings
c magnetic course
d true headings
220 (For this question use Route Manual chart SID PARIS Charles-De-Gaulle (20-3))
id 2327 Planning a IFR flight from Paris (Charles de Gaulle) to London (Heathrow). Find the elevation of the departure aerodrome.
a 217 ft .
b 268 ft .
c 387 ft .
d 2 ft .
221 (For this question use Route Manual chart STAR LONDON Heathrow (10-2))
id 2328 Planning a IFR flight from Paris (Charles de Gaulle) to London (Heathrow). Find the elevation of the destination aerodrome.
a 77 ft .
b 80 ft .
c 177 ft .
d 100 ft .

222 Planning an IFR-flight from Paris to London (Heathrow). Name the identifier and id 4390 frequency of the initial approach fix (IAF) of the BIG 2A arrival route.
a EPM 316 kHz
b BIG 115.1 MHz
c OCK 115.3 MHz
d BIG 115.1 kHz
223 The minimum holding altitude (MHA) and maximum holding speed (IAS) at MHA at id 4409 OCKHAM OCK 115.3 are:
a 7000 ft and 220kt
b 9000ft and 220kt
c 7000 ft and 250 kt
d 9000 ft and 250 kt

id 4410	The route distance from CHIEVRES (CIV) to BOURSONNE (BSN) is :

a 88 NM
b 83 NM
c 96 NM
d 73 NM
225 EGLL: Which of the following is a correct Minimum Safe Altitude (MSA) for the id 4411 Airport?
a West sector 2300 ft within 25 NM
b West sector 2100 ft within 25 NM
c East sector 2100 ft within 50 NM
d East sector 2300 ft within 50 NM
226 LEMD: For runway 33 arrivals from the east and south, the Initial Approach Fix id 4412 (IAF) inbound from airway UR10 is:
a CJN
b VTB
c CENTA
d MOTIL
227 LSZH: Which is the correct ALBIX departure via AARAU for runway 16?
id 4413
a ALBIX 7A
b ALBIX 75
c ALBIX 6 H
d ALBIX 6E
228 EHAM: The route distance from runway 27 to ARNEM is:
id 4414
a 52 NM
b 35 NM
c 59 NM
d 67 NM

229 EHAM: Which of the following statements is correct for ANDIK departures from id 4415 runway 19L?
a Maximum IAS 250kt turning left at SPL 3.1 DME
b Cross ANDIK below FL60
c The distance to ANDIK is 25 NM

d Contact SCHIPOL DEPARTURE 119.05 passing 2000 ft and report altitude

230 EDDM: The correct arrival route and Initial Approach Fix (IAF) for an arrival from the id 4416 west via TANGO for runway $08 \mathrm{~L} / \mathrm{R}$ is:
a AALEN 1T, IAF MBG
b AALEN 1T, IAF ROKIL
c NDG 1T, IAF ROKIL
d DKB 1T, IAF ROKIL
231 LSZH: Aeroplane arriving via route BLM $2 Z$ only, should follow the following route to id 5100 EKRON int:
a WIL R018 outbound to EKRON int
b TRA R247 outbound to EKRON int
c BLM R111 to GOLKE int then TRA R-247 inbound to EKRON int
d HOC R067 via GOLKE to EKRON int
232 EDDM: Which is the correct departure via KEMPTEN from runway 26L?
id 5101
a KEMPTEN THREE ECHO
b KEMPTEN FIVE SIERRA
c KEMPTEN THREE QUEBEC
d KEMPTEN THREE NOVEMBER

33.04.02.06. MNPS-RVSM

233 Your aircraft is approved for MNPS and RVSM. What do you have to insert in item id 8961 10 of the ATC flight plan?
a W
b Y
c X
d W, X
234 Which is the correct date of the implementation of the RVSM in the European
id 8962 Airspace?
a 1 January 2002
b 24 January 2002
c 1 February 2005
d 1 July 2001
235 RVSM In-Flight procedure: Cross checks of the primary altimeters shall be made id 8963 at intervals of approximately one hour. These primary altimeters shall agree within
a 50 ft
b 100 ft
c 150 ft
d 200 ft

236
id 8964

RVSM Pre-Flight procedure: The flight crew shall verfiy the altimetry accuracy by setting the QNH or QFE. The reading should then agree with the altitude of the apron or the zero height indication within
a 25 ft
b 30 ft
c 75 ft
d 150 ft
237 Which flight level is not a RVSM level?
id 8965
a FL 280
b FL 290
c FL 300
d FL310

238	Which equipment failure must not be reported to ATC on a RVSM level?
id 8966	

a Loss of thrust on one or more engines which requires a descent
b Main hydraulic-pump failure
c Loss of one or more altimetry systems
d Failure of all automatic altitude-control systems
239 Do you need TCAS/ACAS Version 7.0 to operate in EUR-RVSM airspace?
id 8967
a Yes, if the aircraft has more than 30 seats or the aircraft weight is over 15000 kg
b No
c \
d
$\mathbf{2 4 0}$ Your aircraft is not RVSM approved. Are you able to enter RVSM airspace?
id 8968
a Yes, but not as a civil operator
b Yes, but only over HMU's
c Yes, but I can climb and descend through RVSM airspace only
d Yes, only on FL310 and FL350
241 What does HMU mean?
id 8969
a Horizontal measuring unit
b Height measuring unit
c Height metering unit
d Height monitoring unit
242 RVSM In-Flight procedure: When changing levels, the aircraft shall not overshoot
id 8970 or undershoot the cleared flight level by more than
a 50 ft
b 150 ft
c 200 ft
d 100 ft

$\mathbf{2 4 3}$	What is the proper phraseology if ATC wants to know if you are RVSM approved?
id 8971	

a RVSM ok
b RVSM approved
c Affirmative RVSM
d Affirm RVSM

$\mathbf{2 4 4}$	Which equipment is not necessary to get a RVSM approval?
id 8972	

id 8972
a Altitude alerting system
b GPS with altitude reporting system
c Automatic altitude control system
d SSR transponder with altitude reporting system in use for altitude keeping

$\mathbf{2 4 5}$	When approaching a cleared Flight level, the vertical speed should not exceed
id 8973	

a $2000 \mathrm{ft} / \mathrm{min}$.
b $350 \mathrm{ft} / \mathrm{min}$.
c $750 \mathrm{ft} / \mathrm{min}$.
d $1500 \mathrm{ft} / \mathrm{min}$.
246 Which document provides guidance for the approval of RVSM aircraft?
id 8974
a AIC 22
b JAR-FCL
c JAA TGL No. 6
d IL 20

id 8975	RVSM was first implemented in which airspace?

a Pacific
b Europe
c NAT
d Africa
248 Which transponder code is correct if you are 40 minutes before entering NAT id 8976 airspace?
a 7500
b 2000
c as requested by ATC
d 7000
249 In case of an engine failure, unable to maintain altitude, how many miles do you id 8977 have to fly offset of NAT track?
a 2 NM
b 2 NM left
c 30 NM left or right
d 15 NM left

$\mathbf{2 5 0}$	
id 8978	What is the Polar Track System?

a 5 routes between Alaska over the North Pole to Japan
b 2 flex tracks from Tokyo to Honolulu
c 6 tracks between Hawaii and USA
d Fixed tracks between Europe over the North Pole to Alaska

$\mathbf{2 5 1}$	You are entering the NAT. What is the tolerance of the boundary window?

id 8979
a 5 minutes
b 3 minutes, but only between FL 310 and FL 390
c 3 minutes
d no boundary window required

id 8980	What is the NAT Track Message?

a The publication of the Preferred Route Message (PRM)
b The ATC clearance given before the boundary window
c The complete MNPS flight plan
d The publication of the Organized Track Message (OTS)
253 You are flying from ZRH to JFK (EET 8h04'). The EOBT is 1800Z. Are you able to
id 8981 fly the following track? A 54/15 55/20 55/30 53/40 51/50 CYMON EAST LVLS NIL WEST LVLS 310330340350360370390 EUR RTS VIA BABAN NAR N144B N148B-
a Yes
b No
c Yes, but only via exit point BABAN
d Yes, but only via exit point CYMON
254 Your position is $\mathrm{N} 50^{\circ} \mathrm{W} 20^{\circ}$. Your altimeter shows FL263 descending. Which
id 8982 airspace is that?
a A
b MNPS
c F
d C
255 Your HF radio is u/s. Are you able to cross the NAT?
id 8983
a No, before departure, HF radio is a must
b Yes, I can fly the OTS
c Yes, but only on special routes
d It is up to you

256	Before take off on an MNPS flight, one of your Long Range Navigation System fails.

id 8984 What is your action in case you have one system left?
a The Copilot has to exchange the two black boxes
b Continue, because only one system must be operative
c Fly 15 NM offset to the normal tracks
d File Special routes or fly above or below the MNPS

$\mathbf{2 5 7}$	Day time OTS are valid between...
id 8985	

a 1130 LT until 1800 LT
b 1130 Z until 1800 LT
c 1130 Z until 1800 Z
d 0100 Z until 0900 Z

$\mathbf{2 5 8}$	On which VHF frequency can you obtain the NAT clearance from Shanwick?

id 8986
a 127.65 (if your aircraft is registered E of 30 W)
b 120.00 (if your aircraft is registered W of 30 W)
c 123.95 (if your aircraft is registered E of 30 W)
d only possible on HF

33.04.02.07. ETOPS

$\mathbf{2 5 9}$ An aerodrome with weather reports indicating that the weather conditions are at or id 8996 above operation minima from one hour prior to one hour after the anticipated arrival is defined as:
a adequate
b suitable
c not suitable and not adequate
d enroute alternate
$\mathbf{2 6 0}$ On the ground in ZRH the APU on your B737-300 cannot be started. Can you id 8997 accept the aircraft for an ETOPS flight?
a Yes, company procedures do not required it's use
b No
c Yes, providing both engine driven generators operates normally
d Yes, as it is not a required item to dispatch the aircraft

261 8998	What is the Extended Range Entry point (or ETOPS entry point)?

a The ETP
b The point on the route which is 120 minutes flying time (with approved single engine cruise speed) from a suitable alternate
c The point of the route which is 60 minutes flying time (with approved single engine cruise speed) from an alternate airport
d The point where you enter the extended range speed into the FMC

$\mathbf{2 6 2}$	What is general the "most critical fuel scenario" on the B737-300?
id 8999	

a The two engine fuel scenario
b Drift down without APU to 10 '000 ft
c One engine fuel scenario
d If you have less fuel than for 30 minutes on board

263 (North Atlantic Plotting Chart, ETOPS) You are flying from Shannon (EINN) to id 9000 Keflavik (BIKF). The wind component to BIKF is 10kts headwind and to Shannon you will have 20kts tailwind. The ETP from EINN to BIKF is?

a 416 NM from EINN

b 400 NM from BIKF
c 384 NM from EINN
d 416 NM from BIKF
264 North Atlantic Plotting Chart, ETOPS) You are flying from Santa Maria (LPLA) to St. id 9001 John's (CYYT). The wind component to CYYT is 30kts headwind and to LPLA you will have 20kts tailwind. The ETP from SMA to YYT is?
a 580 NM from YYT
b 580 NM from YQX
c 580 NM from SMA
d 650 NM from SMA
265 (Critical fuel reserves long range cruise, CAP698) You have an engine failure and a
id 9002 decompression at the same time. Your data are: Tailwind: 25 kts Distance to diversion airport: 820 kts ISA: $+10^{\circ} \mathrm{C}$ Weight: $55 \prime 000 \mathrm{~kg}$ lcing conditions: YES What is your diversion fuel?
a 8300 kg
b 7035 kg
c 7000 kg
d 8440 kg
266 (Critical fuel reserves long range cruise, CAP698) You have a decompression at id 9003 your cruising altitude and following information: Tailwind: 25 kts Distance to diversion airport: 820 kts ISA: $+20^{\circ} \mathrm{C}$ Weight: $55^{\prime} 000 \mathrm{~kg}$ lcing conditions: No What is your diversion fuel?
a 7270 kg
b 7000 kg
c 8581 kg
d 7480 kg
267 (Area of Operation, CAP 698) You have following information: Weight: 57.5 t
id 9004 Speed schedule: LRC ETOPS approval: 180 min What is your area of operation?
a 1169 NM
b 804 NM
c 1100 NM
d 1134 NM

id 9005	Who is able to perform an ETOPS pre-departure service check on an A330?

a Every mechanic who has an A330 licence
b Only an ETOPS qualified maintenance person can do that
c Only TMC is allowed to do that
d No pre-departue service checks are required

33.04.03. General flight planning tasks

33.04.03.01. Checking of AIP and NOTAM

269 From which of the following would you expect to find information regarding known id 5077 short unserviceability of VOR, TACAN, and NDB?
a NOTAM
b AIP (Air Information Publication)
c SIGMET
d ATCC broadcasts
$\mathbf{2 7 0}$ From which of the following would you expect to find the dates and times when id 5078 temporary danger areas are active
a Only AIP (Air Information Publication)
b NOTAM and AIP (Air Information Publication)
c SIGMET
d RAD/NAV charts
271 From which of the following would you expect to find details of the Search and id 5079 Rescue organisation and procedures (SAR) ?
a ATCC broadcasts
b AIP (Air Information Publication)
c NOTAM
d SIGMET
272 From which of the following would you expect to find facilitation information (FAL) id 5080 regarding customs and health formalities?
a NOTAM
b NAV/RAD charts
c ATCC
d AIP (Air Information Publication)

33.04.03.02. Selection of altitudes or flight levels

273 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4$) An aeroplane has to fly from id 2051 Abbeville ($50^{\circ} 08.1^{\prime} \mathrm{N} 001^{\circ} 51.3^{\prime} \mathrm{E}$) to Biggin ($51^{\circ} 19.8^{\prime} \mathrm{N} 00^{\circ} 00.2^{\prime} \mathrm{E}$). What is the first FL above FL295 that can be flown on an IFR flightplan ?
a FL330
b FL310
c FL 320
d FL 300
274 (For this Question use Fuel Planning MRJT1 Fig. 4.2.1) Find the OPTIMUM
id 4376 ALTITUDE for the twin jet aeroplane. Given: Cruise mass=54000 kg, Long range cruise or . 74 MACH
a 33800 ft
b 34500 ft
c 35300 ft
d maximum operating altitude

275 (For this Question use Fuel Planning MRJT1 Fig. 4.2.1) Find the OPTIMUM id 4377 ALTITUDE for the twin jet aeroplane. Given: Cruise mass=50000 kg, . 78 MACH
a 36200 ft
b 35500 ft
c 36700 ft
d maximum operating altitude
276 (For this Question use Fuel Planning MRJT1) Find the FUEL MILEAGE PENALTY
id 4378 for the twin jet aeroplane with regard to the given FLIGHT LEVEL . Given: Long range cruise, Cruise mass=53000 kg, FL 310
a 4%
b 1%
c 10%
d 0%
277 An appropriate flight level for flight on airway UR1 from ORTAC $\left(50^{\circ} 00^{\prime} \mathrm{N}\right.$
id $5090 \quad 002^{\circ} 00^{\prime} \mathrm{W}$) to MIDHURST MID $114.0\left(51^{\circ} 03^{\prime} \mathrm{N} 000^{\circ} 37^{\prime} \mathrm{W}\right)$ is:
a FL230
b FL260
c FL240
d FL250
278 An appropriate flight level for flight on airway UG1 from ERLANGEN ERL 114.9
id 5091 ($49^{\circ} 39^{\circ} \mathrm{N} 011^{\circ} 09^{\prime} \mathrm{E}$) to FRANKFURT FFM $114.2\left(50^{\circ} 03^{\prime} \mathrm{N} 008^{\circ} 38^{\prime} \mathrm{E}\right)$ is :
a FL310
b FL290
c FL300
d FL320
279 An appropriate flight level for flight on airway UG5 from MENDE-NASBINALS MEN
id 5093 115.3 ($\left.44^{\circ} 36^{\prime} \mathrm{N} 003^{\circ} 10^{\prime} \mathrm{E}\right)$ to GAILLAC GAI $115.8\left(43^{\circ} 57^{\prime} \mathrm{N} 001^{\circ} 50^{\prime} \mathrm{E}\right)$ is :
a FL300
b FL280
c FL290
d FL310
$\mathbf{2 8 0}$ An appropriate flight level for flight on airway UR24 from NANTES NTS 117.2
id $5094\left(47^{\circ} 09^{\prime} \mathrm{N} 001^{\circ} 37^{\prime} \mathrm{W}\right)$ to CAEN CAN $115.4\left(49^{\circ} 10^{\prime} \mathrm{N} 000^{\circ} 27^{\prime} \mathrm{W}\right)$ is:
a FL300
b FL290
c FL310
d FL270
281 An appropriate flight level for flight on airway B3 from CHATILLON CTL 117.6
id $5095\left(49^{\circ} 08^{\prime} \mathrm{N} 003^{\circ} 35^{\prime} \mathrm{E}\right)$ to CAMBRAI CMB $112.6\left(50^{\circ} 14^{\prime} \mathrm{N} 003^{\circ} 09^{\prime} \mathrm{E}\right)$ is :
a FL80
b FL170
c FL60
d FL50

282 An appropriate flight level for flight on airway R10 from MONTMEDY MMD 109.4
id 5097 ($\left.49^{\circ} 24^{\prime} \mathrm{N} 005^{\circ} 08^{\prime} \mathrm{E}\right)$ to CHATILLON CTL 117.6 ($49^{\circ} 08^{\prime} \mathrm{N} 003^{\circ} 35^{\prime} \mathrm{E}$) is :
a FL70
b FL60
c FL50
d FL40
283 An appropriate flight level for IFR flight in accordance with semi-circular height id 5098 rules on a course of $180^{\circ}(\mathrm{M})$ is:
a FL100
b FL90
c FL95
d FL105
$\mathbf{2 8 4}$ An appropriate flight level for IFR flight in accordance with semi-circular height id 5099 rules on a magnetic course of 200° is:
a FL320
b FL310
c FL290
d FL300
285 You must fly IFR on an airway orientated 135° magnetic with a MSA at 7800 ft .
id 5534 Knowing the QNH is 1025 hPa and the temperature is ISA $+10^{\circ}$, the minimum flight level you must fly at is:
a 75
b 80
c 90
d 70
286 An aircraft, following a 215° true track, must fly over a 10600 ft obstacle with a
id 5535 minimum obstacle clearance of 1500 ft . Knowing the QNH received from an airport close by, which is almost at sea-level, is 1035 and the temperature is ISA $15^{\circ} \mathrm{C}$, the minimum flight level will be:
a 140
b 120
c 130
d 150
287 On an IFR navigation chart, in a 1° quadrant of longitude and latitude, appears the id 5538 following information "80". This means that within this quadrant:

a the minimum safe altitude is 8000 ft

b the minimum flight level is FL 80
c the altitude of the highest obstacle is 8000 ft
d the floor of the airway is at 8000 ft
288 On an instrument approach chart, a minimum sector altitude (MSA) is defined in id 5546 relation to a radio navigation facility. Without any particular specification on distance, this altitude is valid to:
a 20 NM
b 25 NM
c 15 NM
d 10 NM

289 An IFR flight is planned outside airways on a course of 235° magnetic. The id 5547 minimum safe altitude is 7800 ft . Knowing the QNH is 995 hPa , the minimum flight level you must fly is:
a 80
b 90
c 85
d 100

33.04.03.05. Completion of fuel plan

290 An aeroplane has the following masses: ESTLWT $=50000 \mathrm{~kg}$ Trip fuel $=4300 \mathrm{~kg}$
id 1394 Contingency fuel $=215 \mathrm{~kg}$ Alternate fuel (final reserve included) $=2100 \mathrm{~kg}$ Taxi $=500$ kg Block fuel= 7115 kg Before departure the captain orders to make the block fuel 9000 kg . The trip fuel in the operational flight plan should read:
a 4300 kg .
b 6185 kg .
c 9000 kg .
d 6400 kg .

33.04.03.06. Preliminary study of instrument approach

id 4028	EGLL ILS DME Rwy 09L: The Decision Altitude (DA) for a ILS straight-in landing is :

a 280 ft
b 200 ft
c 400 ft
d 480 ft
292 EHAM VORDME Rwy 22: The Missed Approach procedure is to climb to an alitude id 4029 of (i)------------ on a track of (ii)
a (i) 3000 ft (ii) 223°
b (i) 200 ft (ii) 223°
c (i) 3000 ft (ii) 160°
d (i) 2000 ft (ii) 160°
293 LSZH ILS Rwy 14: The minimum glide slope interception altitude for a full ILS is:
id 5103
a 4000 ft
b 3370 ft
c 2598 ft
d 1968 ft
294 The Radio Altimeter minimum altitude for a CAT 2 ILS DME :
id 5104
a 100 ft
b 88 ft
c 300 ft
d 188 ft

295 EGLL ILS DME Rwy 09R: The Minimum Descent Altitude (MDA) for an ILS glide id 5105 slope out, is:
a 275 ft
b 405 ft
c 480 ft
d 200 ft
296 LFPG, VORDME Rwy 27: The crossing altitude and descent instruction for a
id 5106 propeller aircraft at COULOMMIERS (CLM) are :
a Cross at FL60 and maintain
b Cross at FL70 descend to 4000 ft
c Cross at FL80 descend to FL70
d Cross at FL60 descend to 4000 ft
297 EDDM ILS Rwy 26R: The ILS frequency and identifier are:
id 5107
a 108.7 IMSW
b 108.7 IMNW
c 108.3 IMNW
d 108.3 IMSW
298 LFPG ILS Rwy 09: The ILS localizer course is:
id 5108
a 100°
b 088°
c 118°
d 268°
299 EDDM NDB DME Rwy 26L: The frequency and identifier of the NDB for the id 5110 published approachs are:
a 108.6 DMS
b 338 MNW
c 400 MSW
d 112.3 MUN
$\mathbf{3 0 0}$ Which approach segment starts at the point were you report "established" ? id 8857
a Final approach
b Initial approach
c Go around
d Intermediate approach
301 Which approach segment starts at the FAF and ends at the MAP?
id 8858
a Initial approach

b Final approach

c Go around
d Intermediate approach

33.04.04. IR Flightplan exercices

302 Planning an IFR-flight from Paris to London for the twin jet aeroplane. Given:
id 4564 Estimated Landing Mass 49700 kg , FL 280, W/V 280º 40 kt , Average True Course 320°, Procedure for descent $.74 \mathrm{M} / 250 \mathrm{KIAS}$ Determine the distance from the top of descent to London (elevation 80 ft).
a 87 NM
b 76 NM
c 97 NM
d 65 NM
303 Planning an IFR-flight from Paris to London for the twin jet aeroplane. Given:
id 4565 Estimated Landing Mass 49700 kg , FL 280, W/V 280º$/ 40 \mathrm{kt}$, Average True Course 320°, Procedure for descent $.74 \mathrm{M} / 250$ KIAS Determine the time from the top of descent to London (elevation 80 ft).
a 10 min
b 19 min
c 17 min
d 8 min
304 Planning an IFR-flight from Paris to London for the twin jet aeroplane. Given:
id 4566 Estimated Landing Mass 49700 kg , FL 280, W/V $280^{\circ} / 40 \mathrm{kt}$, Average True Course 320°, Procedure for descent $.74 \mathrm{M} / 250$ KIAS Determine the fuel consumption from the top of descent to London (elevation 80 ft).
a 263 kg
b 273 kg
c 210 kg
d 320 kg

33.05. JET AEROPLANES FLIGHT

PLANNING

33.05.01. Additional flight planning aspects for jet aeropla

33.05.01.01. Fuel planning

305 Mark the correct statement: If a decision point procedure is applied for flight id 960 planning,
a the trip fuel to the destination aerodrome is to be calculated via the suitable enroute alternate.
b the trip fuel to the destination aerodrome is to be calculated via the decision point.
c a destination alternate is not required.
d the fuel calculation is based on a contingency fuel from departure aerodrome to the decision point.
306 An operator (turbojet engine) shall ensure that calculation up of usable fuel for a
id 1612 flight for which no destination alternate is required includes, taxi fuel, trip fuel, contingency fuel and fuel to fly for:
a 45 minutes plus 15% of the flight time planned to be spent at cruising level or two hours whichever is less
b 2 hours at normal cruise consumption
c $\mathbf{3 0}$ minutes at holding speed at 450 m above aerodrome elevation in standard conditions
d 30 minutes at holding speed at 450 m above MSL in standard conditions
307 Planning a flight from Paris (Charles de Gaulle) to London (Heathrow) for a twin -
id 1783 jet aeroplane. Preplanning: Maximum Take-off Mass: 62800 kg Maximum Zero Fuel Mass: 51250 kg Maximum Landing Mass: 54900 kg Maximum Taxi Mass: 63 050 kg Assume the following preplanning results: Trip fuel: 1800 kg Alternate fuel: 1400 kg Holding fuel (final reserve): 1225 k
a 55765 kg .
b 51515 kg .
c 51425 kg .
d 52265 kg .
$\mathbf{3 0 8}$ The required time for final reserve fuel for turbojet aeroplane is:
id 1855
a 45 min .
b 30 min .
c 60 min .
d Variable with wind velocity.
309 The quantity of fuel which is calculated to be necessary for a jet aeroplane to fly id 1978 IFR from departure aerodrome to the destination aerodrome is 5352 kg . Fuel consumption in holding mode is $6000 \mathrm{~kg} / \mathrm{h}$. Alternate fuel is 4380 kg . Contingency should be 5% of trip fuel. What is the minimum required quantity of fuel which should be on board at take-off?
a 13370 kg .
b 14500 kg .
c 13000 kg .
d 13220 kg .
$\mathbf{3 1 0}$ The following fuel consumption figures are given for a jet aeroplane: -standard taxi id 1979 fuel: 600 kg . -average cruise consumption: $10000 \mathrm{~kg} / \mathrm{h}$. -holding fuel consumption at 1500 ft above alternate airfield elevation: $8000 \mathrm{~kg} / \mathrm{h}$. -flight time from departure to destination: 6 hours -fuel for diversion to alternate: 10200 kg . The minimum ramp fuel load is:
a 77800 kg
b 74800 kg
c 79800 kg
d 77200 kg
311 A jet aeroplane has a cruising fuel consumption of $4060 \mathrm{~kg} / \mathrm{h}$, and $3690 \mathrm{~kg} / \mathrm{h}$ during
id 1981 holding. If the destination is an isolated airfield, the aeroplane must carry, in addition to contingency reserves, additionnal fuel of :
a 7380 kg .
b 8120 kg .
c 1845 kg .
d 3500 kg .
312 A jet aeroplane is to fly from A to B. The minimum final reserve fuel must allow for: id 1982
a 20 minutes hold over alternate airfield.
b $\mathbf{3 0}$ minutes hold at 1500 ft above destination aerodrome elevation, when no alternate is required.
c 30 minutes hold at 1500 ft above mean sea level.
d 15 minutes hold at 1500 ft above destination aerodrome elevation.
313 (For this question use Flight Planning Manual MRJT 1 Figure 4.3.1.B) Given : id 2060 estimated zero fuel mass 50 t ; estimated landing mass at alternate 52 t ; final reserve fuel 2 t ; alternate fuel 1 t ; flight to destination, distance 720 NM , true course (TC) 030, W/V 340/30; cruise: long range FL 330, outside air temperature $-30^{\circ} \mathrm{C}$. Find : estimated trip fuel and time
a 4800 kg ; 01 : $\mathbf{4 5}$
b 4400 kg ; 02 : 05
c 4750 kg ; 02 : 00
d 4600 kg ; $02: 05$
314 (For this question use Flight Planning Manual MRJT 1 Figure 4.3.6) Given:
id 2061 estimated dry operation mass 35500 kg ; estimated load 14500 kg ; final reserve fuel 1200 kg ; distance to alternate 95 NM ; average true track 219°; head wind component 10 kt Find : fuel and time to alternate.
a $1100 \mathrm{~kg} ; 44 \mathrm{~min}$
b $\mathbf{1 1 0 0} \mathbf{~ k g}$; $\mathbf{2 5} \mathbf{~ m i n}$
c $800 \mathrm{~kg} ; 24 \mathrm{~min}$
d $800 \mathrm{~kg} ; 40 \mathrm{~min}$
315 (For this question use Flight Planning Manual MRJT 1 Figure 4.3.3C) Given: ground id 2062 distance to destination aerodrome 1600 NM ; headwind component 50 kt ; FL 330; cruise 0.78 Mach; ISA $+20^{\circ} \mathrm{C}$; estimated landing weight 55000 kg . Find: simplified flight planning to determine estimated trip fuel and trip time.
a 12400 kg .04 h 12 min
b 11400 kg .04 h 12 min
c 12400 kg . 03h 55 min
d 11400 kg .03 h 55 min

316 (For this question use Flight Planning Manual MRJT 1 Figure 4.4) Given: dry id 2063 operating mass 35500 kg ; estimated load 12000 kg , contingency approach and landing fuel 2500 kg ; elevation at departure aerodrome 500 ft ; elevation at alternate aerodrome 30 ft . Find: final reserve fuel for a jet aeroplane (holding) and give the elevation which is relevant.
a 2360 kg ;destination elevation
b 2360 kg ; alternate elevation
c 1180 kg ;destination elevation
d $1 \mathbf{1 8 0} \mathbf{~ k g}$; alternate elevation
$\mathbf{3 1 7}$ The purpose of the decision point procedure is ?
id 2185
a To increase the safety of the flight.
b To reduce the landing weight and thus reduce the structural stress on the aircraft.
c To reduce the minimum required fuel and therefore be able to increase the traffic load.
d To increase the amount of extra fuel.

id 218	When using decision point procedure, you reduce the

a holding fuel by 30%.
b contingency fuel by adding contingency only from the burnoff between the decision airport and destination.
c reserve fuel from 10% down to 5%.
d contingency fuel by adding contingency only from the burnoff between decision point and destination.
319 (For this Question use Fuel Planning MRJT1) Find the SPECIFIC RANGE for the
id 2765 twin jet aeroplane flying below the optimum altitude (range loss $=6 \%$) and using the following data. Given: MACH . 74 CRUISE, Flight level = 310, Gross mass = 50000 kg , ISA conditions
a 2807 NAM/ 1000 kg
b 187 NAM/ 1000 kg
c 2994 NAM/1000 kg
d 176 NAM/1000 kg
320 (For this Question use Fuel Planning MRJT1) Find the FUEL FLOW for the twin jet id 2766 aeroplane with regard to the following data. Given: MACH . 74 cruise, Flight level 310, Gross mass 50000 kg, ISA conditions
a $1497 \mathrm{~kg} / \mathrm{h}$
b $1150 \mathrm{~kg} / \mathrm{h}$
c $2300 \mathrm{~kg} / \mathrm{h}$
d $2994 \mathrm{~kg} / \mathrm{h}$
321 (For this Question use Fuel Planning MRJT1 Fig. 4.3.6) In order to find
id 4371 ALTERNATE FUEL and TIME TO ALTERNATE, the AEROPLANE OPERATING MANUAL shall be entered with:
a distance in nautical miles (NM), wind component, landing mass at alternate
b distance in nautical air miles (NAM), wind component, landing mass at alternate
c distance in nautical miles (NM), wind component, zero fuel mass
d distance in nautical miles (NM), wind component, dry operating mass plus holding fuel

322 The final reserve fuel for aeroplanes with turbine engines is
id 4372
a fuel to fly for 45 minutes at holding speed at $1000 \mathrm{ft}(300 \mathrm{~m})$ above aerodrome elevation in standard conditions.
b fuel to fly for 45 minutes at holding speed at $1500 \mathrm{ft}(450 \mathrm{~m})$ above aerodrome elevation in standard conditions.
c fuel to fly for 30 minutes at holding speed at $1500 \mathrm{ft}(450 \mathrm{~m})$ above aerodrome elevation in standard conditions.
d fuel to fly for 60 minutes at holding speed at $1500 \mathrm{ft}(450 \mathrm{~m})$ above aerodrome elevation in standard conditions.
323 Which of the following statements is relevant for forming route portions in id 4373 integrated range flight planning?
a The distance from take-off up to the top of climb has to be known.
b No segment shall be more than 30 minutes of flight time.
c Each reporting point requires a new segment.
d A small change of temperature $\left(2^{\circ} \mathrm{C}\right)$ can divide a segment.
324 (For this Question use Fuel Planning MRJT1) Find: Final fuel consumption for this
id 4379 leg Given: Long range cruise, Temperature $-63^{\circ} \mathrm{C}$, FL 330, Initial gross mass enroute 54100 kg , Leg flight time 29 min
a 1100 kg
b 1107 kg
c 1093 kg
d 1000 kg
325 (For this Question use Fuel Planning MRJT1) Find: Air distance in Nautical Air id 4380 Miles (NAM) for this leg and fuel consumption Given: Flight time from top of climb at FL 280 to the enroute point is 48 minutes. Cruise procedure is long range cruise. Temperature is ISA $-5^{\circ} \mathrm{C}$. The take-off mass is 56000 kg and climb fuel 1100 kg .
a 345 NAM; 2000 kg
b 349 NAM; 2000 kg
c 345 NAM; 1994 kg
d 345 NAM; 2006 kg
326 (For this Question use Fuel Planning MRJT1) Given: Brake release mass 57500 id 4381 kg , Initial FL 280, average temperature during climb ISA $-10^{\circ} \mathrm{C}$, average head wind component 18 kt Find: Climb time for enroute climb 280/.74
a 13 min
b 11 min
c 15 min
d 14 min
327 (For this Question use Fuel Planning MRJT1) Given: Brake release mass 57500 id 4382 kg , Temperature ISA $-10^{\circ} \mathrm{C}$, Headwind component 16 kt , Initial FL 280 Find: Still air distance (NAM) and ground distance (NM) for the enroute climb 280/.74
a 62 NAM, 59 NM
b 59 NAM, 62 NM
c 62 NAM, 71 NM
d 71 NAM, 67 NM

328 (For this Question use Fuel Planning MRJT1) Given: Brake release mass 57500 id 4383 kg , Temperature ISA $-10^{\circ} \mathrm{C}$, Average headwind component 16 kt , Initial FL 280 Find: Climb fuel for enroute climb 280/.74
a 1040 kg
b 1238 kg
c 1387 kg
d 1138 kg
329 (For this Question use Fuel Planning MRJT1) Given: Long range cruise, OAT -
id $438645^{\circ} \mathrm{C}$ at FL 350, Gross mass at the beginning of the leg 40000 kg , Gross mass at the end of the leg 39000 kg Find: True air speed (TAS) and cruise distance (NAM) for a twin jet aeroplane
a TAS 423 kt , 227 NAM
b TAS 433 kt , 227 NAM
c TAS 433 kt, 1163 NAM
d TAS $423 \mathrm{kt}, 936$ NAM
330 (For this Question use Fuel Planning MRJT1) Given: Estimated take-off mass id 438757000 kg , Ground distance 150 NM , Temperature ISA - $10^{\circ} \mathrm{C}$, Cruise at .74 Mach Find: Cruise altitude and expected true air speed
a $25000 \mathrm{ft}, \mathbf{4 3 5} \mathbf{~ k t}$
b $24000 \mathrm{ft}, 445 \mathrm{kt}$
c $33500 \mathrm{ft}, 430 \mathrm{kt}$
d $33900 \mathrm{ft}, 420 \mathrm{kt}$
331 (For this Question use Fuel Planning MRJT1) Given: twin jet aeroplane, FL 330,
id 4551 Long range cruise, Outside air temperature $-63^{\circ} \mathrm{C}$, Gross mass 50500 kg Find: True air speed (TAS)
a 433 kt
b 420 kt
c 431 kt
d 418 kt
332 (For this Question use Fuel Planning MRJT1) Given: Diversion distance 720NM
id 5730 Tail wind component 25kt Mass at point of diversion 55000kg Temperature ISA Diversion fuel available 4250 kg What is the minimum pressure altitude at which the above conditions may be met ?
a 26000 ft
b 20000ft
c 16000ft
d 14500ft
333 (For this Question use Fuel Planning MRJT1) Given: Diversion distance 650 NM id 5731 Diversion pressure altitude 16000 ft Mass at point of diversion 57000 kg Head wind component 20 kt Temperature $\mathrm{ISA}+15^{\circ} \mathrm{C}$ The diversion (a) fuel required and (b) time, are approximately :
a (a) 4400 kg (b) 1 h 35 min
b (a) 3900 kg (b) 1 h 45 min
c (a) 6200 kg (b) 2 h 10 min
d (a) 4800 kg (b) 2 h 03 min

334 (For this Question use Fuel Planning MRJT1) Given: Distance to alternate 950 id 5732 NM Head wind component 20 kt Mass at point of diversion 50000 kg Diversion fuel available $\quad 5800 \mathrm{~kg}$ The minimum pressure altitude at which the above conditions may be met is :
a 22000 ft
b 20000ft
c 26000ft
d 18000 ft
335 (For this Question use Fuel Planning MRJT1) A descent is planned at .74/250KIAS id 5736 from 35000 ft to 5000 ft . How much fuel will be consumed during this descent?
a 290 kg
b 150 kg
c 278 kg
d 140 kg

33.05.01.02. Computation of critical point (CP)

| 336 | If CAS is 190 kts , Altitude 9000 ft . Temp. ISA - $10^{\circ} \mathrm{C}$, True Course (TC) 350°, W/V |
| :--- | :--- | id 2193 320/40, distance from departure to destination is 350 NM, endurance 3 hours, and actual time of departure is 1105 UTC. The Point of Equal Time (PET) is reached at :

a 1213 UTC
b 1221 UTC
c 1233 UTC
d 1203 UTC
337 If CAS is 190 kts , Altitude 9000 ft . Temp. ISA - $10^{\circ} \mathrm{C}$, True Course (TC) 350°, W/V
id 2194 320/40, distance from departure to destination is 350 NM, endurance 3 hours and actual time of departure is 1105 UTC. The distance from departure to Point of Equal Time (PET) is :
a 183 NM
b 147 NM
c 203 NM
d 167 NM
338 Find the distance from waypoint 3 (WP 3) to the critical point. Given: distance from id 2772 WP 3 to WP $4=750$ NM, TAS out 430 kt , TAS return 425 kt , Tailwind component out 30 kt , head wind component return 40 kt
a 408 NM
b 375 NM
c 342 NM
d 403 NM
339 Find the time to the Point of Safe Return (PSR). Given: Maximum useable fuel id 277415000 kg , Minimum reserve fuel 3500 kg , TAS out 425 kt , Head wind component out 30 kt , TAS return 430 kt , Tailwind component return 20 kt , Average fuel flow $2150 \mathrm{~kg} / \mathrm{h}$
a 2 h 59 min
b 3 h 43 min
c 2 h 51 min
d 2 h 43 min

340 Given : Distance A to B 2050 NM Mean groundspeed 'on' 440 kt Mean id 4024 groundspeed 'back' 540 kt The distance to the point of equal time (PET) between A and B is :
a 920 NM
b 1025 NM
c 1130 NM
d 1153 NM
341 Given : Distance A to B 3060 NM Mean groundspeed 'out' 440 kt Mean
id 4025 groundspeed 'back' 540 kt Safe Endurance 10 hours The time to the Point of Safe Return (PSR) is:
a 5 hours 20 minutes
b 5 hours 45 minutes
c 3 hours 55 minutes
d 5 hours 30 minutes
342 Given : $\mathrm{X}=$ Distance A to point of equal time (PET) between A and $\mathrm{BE}=$
id 4417 Endurance D = Distance A to B O = Groundspeed 'on' H = Groundspeed 'back' The formula for calculating the distance X to point of equal time (PET) is:
a $\mathrm{DxHX}=$ \qquad $\mathbf{O + H}$
b $\mathrm{DxOX}=$ \qquad $\mathrm{O}+\mathrm{H}$
c ExOxHX= \qquad $\mathrm{O}+\mathrm{H}$
d $\mathrm{D} \times \mathrm{O} \times \mathrm{HX}=$ \qquad $\mathrm{O}+\mathrm{H}$
343 Given : Course A to B 088° (T) distance 1250 NM Mean TAS 330 kt Mean W/V id $4418 \quad 340 \%$ kt The time from A to the PET between A and B is :
a 1 hour 54 minutes
b 1 hour 42 minutes
c 1 hour 39 minutes
d 2 hours 02 minutes
344 Given : Distance X to Y 2700 NM Mach Number 0.75
id 5102 Temperature $\quad-45^{\circ} \mathrm{C}$ Mean wind component 'on' 10 kt tailwind Mean wind compontent 'back' 35 kt tailwind The distance from X to the point of equal time (PET) between X and Y is :
a 1350 NM
b 1386 NM
c 1313 NM
d 1425 NM
345 Given the following: $\mathrm{D}=$ flight distance $\mathrm{X}=$ distance to Point of Equal Time GSo =
id 5520 groundspeed out GSr = groundspeed return The correct formula to find distance to Point of Equal Time is :
a $\mathrm{X}=\mathrm{D} \times \mathrm{GSr} /$ ($\mathrm{GSo}+\mathrm{GSr}$)
b $\mathrm{X}=\mathrm{D} \times \mathrm{GSo} /(\mathrm{GSo}+\mathrm{GSr})$
c $X=(D / 2) \times$ GSo $/(G S o+G S r)$
d $\mathrm{X}=(\mathrm{D} / 2)+\mathrm{GSr} /$ (GSo +GSr$)$

33.05.02. Computerised flight planning

33.05.02.01. General principles of present systems

346 Which of the following statements is (are) correct with regard to the advantages of id 4026 computer flight plans? 1. The computer can file the ATC flight plan. 2. Wind data used by the computer is always more up-to-date than that available to the pilot.

a Statement 1 only

b Statement 2 only
c Both statements
d Neither statement
347 Which of the following statements is (are) correct with regard to the operation of id 4027 flight planning computers? 1. The computer can file the ATC flight plan. 2. In the event of inflight re-routing the computer produces a new plan.
a Statement 2 only
b Statement 1 only
c Both statements
d Neither statement
348 Which of the following statements is (are) correct with regard to computer flight id 5111 plans 1. The computer takes account of bad weather on the route and adds extra fuel. 2. The computer calculates alternate fuel sufficient for a missed approach, climb, cruise, descent and approach and landing at the destination alternate.
a Statement 1 only
b Both statements
c Statement 2 only
d Neither statement

33.06. PRACTICAL COMPLETION OF A "FLIGHT PLAN"

33.06.01. Extraction of data

33.06.01.01. Extraction of navigational data

349 Given: Leg Moulins(N46 24.4 E003 38.0)/Dijon(N47 16.3 E005 05.9). Find: Route id 4384 designator and total distance
a UG 21, 26 NM
b D, 44 NM
c UG 21, 69 NM
d Direct route, 69 NM

33.06.01.03. Extraction of performance data

350 (For this question use Flight Planning Manual MRJT 1 Figure 4.3.6) In order to get
id 2533 alternate fuel and time, the twin -jet aeroplane operations manual graph shall be entered with:
a Distance (NM), wind component, zero fuel mass.
b Still air distance, wind component, zero fuel mass.
c Flight time, wind component, landing mass at alternate.
d Distance (NM), wind component, landing mass at alternate.
351 "Integrated range" curves or tables are presented in the Aeroplane Operations id 2836 Manuals. Their purpose is
a to determine the optimum speed considering the fuel cost as well as the time related cost of the aeroplane.
b to determine the flight time for a certain leg under consideration of temperature deviations.
c to determine the still air distance for a wind components varying with altitude.
d to determine the fuel consumption for a certain still air distance considering the decreasing fuel flow with decreasing mass.
352 (For this Question use Fuel Planning MRJT1 Fig. 4.2.2) Find the SHORT
id 4374 DISTANCE CRUISE ALTITUDE for the twin jet aeroplane. Given: Brake release mass $=45000 \mathrm{~kg}$, Temperature $=I S A+20^{\circ} \mathrm{C}$, Trip distance $=50$ Nautical Air Miles (NAM)
a 7500 ft
b 10000 ft
c 12500 ft
d 11000 ft
353 (For this Question use Fuel Planning MRJT1 Fig. 4.2.2) Find the SHORT
id 4375 DISTANCE CRUISE ALTITUDE for the twin jet aeroplane. Given: Brake release mass $=40000 \mathrm{~kg}$, Temperature $=1 S A+20^{\circ} \mathrm{C}$, Trip distance $=150$ Nautical Air Miles (NAM)
a 30000 ft
b 25000 ft
c 21000 ft
d 27500 ft

354 (For this Question use Fuel Planning MRJT1) Given: twin jet aeroplane, Zero fuel id 4554 mass 50000 kg , Landing mass at alternate 52000 kg , Final reserve fuel 2000 kg , Alternate fuel 1000 kg , Flight to destination: Distance 720 NM , True course 030°, W/V $340^{\circ} / 30 \mathrm{kt}$, Long range cruise, FL 330, Outside air temperature $-30^{\circ} \mathrm{C}$ Find: Estimated trip fuel and time with simplified flight planning
a 4750 kg , 02 h 00 min
b 4400 kg , 02 h 05 min
c 4800 kg , 01 h 51 min
d $4600 \mathrm{~kg}, 02 \mathrm{~h} 05 \mathrm{~min}$
355 (For this Question use Fuel Planning MRJT1) Given: Twin jet aeroplane, Ground id 4555 distance to destination aerodrome is 1600 NM , Headwind component 50 kt , FL 330 , Cruise . 78 Mach, ISA Deviation $+20^{\circ} \mathrm{C}$ and Landing mass 55000 kg Find: Fuel required and trip time with simplified flight planning
a $11400 \mathrm{~kg}, 04 \mathrm{~h} 12 \mathrm{~min}$
b $12400 \mathrm{~kg}, \mathbf{0 4} \mathbf{h} 00 \mathrm{~min}$
c $11600 \mathrm{~kg}, 04 \mathrm{~h} 15 \mathrm{~min}$
d $12000 \mathrm{~kg}, 03 \mathrm{~h} 51 \mathrm{~min}$
356 (For this Question use Fuel Planning MRJT1) Given: twin jet aeroplane, Dry id 4556 operating mass 35500 kg , Traffic load 14500 kg , Final reserve fuel 1200 kg , Distance to alternate 95 NM, Tailwind component 10 kt Find: Fuel required and trip time to alternate with simplified flight planning (ALTERNATE PLANNING)
a $800 \mathrm{~kg}, 0.4 \mathrm{hr}$
b $1000 \mathrm{~kg}, 40 \mathrm{~min}$
c $800 \mathrm{~kg}, 24 \mathrm{~min}$
d $1000 \mathrm{~kg}, 24 \mathrm{~min}$
357 (For this Question use Fuel Planning MRJT1) Given: twin jet aeroplane, Estimated id 4557 mass on arrival at the alternate 50000 kg , Estimated mass on arrival at the destination 52525 kg , Alternate elevation MSL, Destination elevation 1500 ft Find: Final reserve fuel and corresponding time
a 2360 kg , 01 h 00 min
b $2360 \mathrm{~kg}, 30 \mathrm{~min}$
c $1180 \mathrm{~kg}, 30 \mathrm{~min}$
d $1180 \mathrm{~kg}, 45 \mathrm{~min}$
358 (For this Question use Fuel Planning MRJT1) Given: twin jet aeroplane, Estimated id 4558 mass on arrival at the alternate 50000 kg , Elevation at destination aerodrome 3500 ft , Elevation at alternate aerodrome 30 ft Find: Final reserve fuel
a 1150 kg
b 2360 kg
c 1180 kg
d 2300 kg

33.06.01.05. Completion of fuel plan

359 Given: Dry operating mass (DOM) $=33500 \mathrm{~kg}$ Load $=7600 \mathrm{~kg}$ Maximum allowable id 1859 take-off mass= 66200 kg Standard taxi fuel $=200 \mathrm{~kg}$ Tank capacity= 16100 kg The maximum possible take-off fuel is:
a 15900 kg
b 17100 kg
c 16300 kg
d 17300 kg
360 (For this question Flight Planning Manual MRJT 1 Figure 4.5.3.1) Given: long range id 2044 cruise: temp. $-63^{\circ} \mathrm{C}$ at FL 330 initial gross mass enroute 54100 kg ; leg flight time 29 min Find: fuel consumption for this leg
a 1200 kg
b 1100 kg
c 1020 kg
d 1680 kg
361 (For this question Flight Planning Manual MRJT 1 Figure 4.5.3.1) Given: flight time id 2045 from top of climb to the enroute point in FL280 is 48 min . Cruise procedure is long range cruise (LRC). Temp. ISA - $5^{\circ} \mathrm{C}$ Take-off mass 56000 kg Climb fuel 1 100 kg Find: distance in nautical air miles (NAM) for this leg and fuel consumption:
a 345 NAM; 2000 kg
b 350 NAM; 2000 kg
c 345 NAM; 2100 kg
d 437 NAM; 2100 kg
362 (For this question use Flight Planning Manual MRJT 1 Figure 4.5.1) Given:
id 2046 estimated take-off mass 57500 kg ; initial cruise FL 280; average temperature during climb ISA $-10^{\circ} \mathrm{C}$; average head wind component 18 kt Find: climb time
a 15 min
b 11 min
c 13 min
d 14 min
363 (For this question use Flight Planning Manual MRJT 1 Figure 4.5.1) Given : brake id 2047 release mass 57500 kg temperature ISA $-10^{\circ} \mathrm{C}$; head wind component 16 kt initial FL 280 Find: still air distance (NAM) and ground distance (NM) for the climb
a 59 NAM; 62 NM
b 62 NAM; 59 NM
c $67 \mathrm{NAM} ; 71 \mathrm{NM}$
d 71 NAM; 67 NM
364 (For this question use Flight Planning Manual MRJT 1 Figure 4.5.1) Given : mass at id 2048 brake release 57500 kg ; temperature ISA $-10^{\circ} \mathrm{C}$; average head wind component 16 kt initial cruise FL 280 Find: climb fuel
a 1138 kg
b 1238 kg
c 1387 kg
d 1040 kg

365 (For this question Flight Planning Manual MRJT 1 Figure 4.5.3.1) Given :FL 330; id 2050 long range cruise; OAT $-63^{\circ} \mathrm{C}$; gross mass 50500 kg . Find: true airspeed (TAS)
a 420 kt
b 433 kt
c 431 kt
d 418 kt
366 (For this question Flight Planning Manual MRJT 1 Figure 4.5.3.1) Given: long range
id 2057 cruise; outside air temperature (OAT) $-45^{\circ} \mathrm{C}$ in FL 350; mass at the beginning of the leg 40000 kg ; mass at the end of the leg 39000 kg . Find: true airspeed (TAS) at the end of the leg and the distance (NAM).
a TAS 423 kt ; 936 NAM
b TAS 423 kt; 227 NAM
c TAS 431 kt; 1163 NAM
d TAS 431 kt; 227 NAM
367 (For this question use Flight Planning Manual MRJT 1) Given: estimated take-off id 2059 mass 57000 kg ; still air distance 150 NAM ; outside air temperature (OAT) ISA 10K; cruise at 0.74 Mach. Find : cruise altitude and expected true airspeed
a $22000 \mathrm{ft} ; 451 \mathrm{kt}$
b $25000 \mathrm{ft} ; 445 \mathrm{kt}$
c $22000 \mathrm{ft} ; 441 \mathrm{kt}$
d $25000 \mathrm{ft} ; 435 \mathrm{kt}$
368 (For this question use Flight Planning Manual MRJT 1 Figure 4.4) Planning a flight
id 2331 from Paris Charles de Gaulle to London Heathrow for a twin - jet aeroplane. Preplanning: Dry Operating Mass (DOM): 34000 kg Traffic Load: 13000 kg The holding is planned at 1500 ft above alternate elevation. The alternate elevation is 256 ft . The holding is planned for 30 minutes with no
a 48675 kg .
b 49250 kg .
c 2250 kg .
d 48125 kg .
369 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4$) Planning a flight from Paris
id 2332 Charles de Gaulle (N49 00.9 E002 36.9) to London Heathrow (N51 29.2 W000 27.9) for a twin - jet aeroplane. The alternate airport is Manchester (N53 21.4 W002 15.7) Preplanning: The wind from London to Manchester is $250^{\circ} / 30 \mathrm{kt}$ The distance from London to Manchester is 160 NM. Assume the Estimat
a 1200 kg and 26 minutes.
b 1300 kg and 28 minutes.
c 1600 kg and 36 minutes.
d 1450 kg and 32 minutes.

370 (For this question use Route Manual chart $\mathrm{E}(\mathrm{HI}) 4)$ Planning a flight from Paris id 2333 Charles de Gaulle (N49 00.9 E002 36.9) to London Heathrow (N51 29.2 W000 27.9) for a twin - jet aeroplane. Preplanning: Powersetting: Mach= 0.74 Planned flight level FL 280 The Landing Mass in the fuel graph is 50000 kg The trip distance used for calculation is 200 NM The wind from P
a 1450 kg .
b 1550 kg .
c 1900 kg .
d 1740 kg .
371 (For this Question use Fuel Planning MRJT1) Finish the ENDURANCE/FUEL
id 2767 CALCULATION and determine ATC ENDURANCE for a twin jet aeroplane, with the help of the table provided. Contingency is 5% of the planned trip fuel and fuel flow for extra fuel is $2400 \mathrm{~kg} / \mathrm{h}$.
a ATC ENDURANCE: 04:07
b ATC ENDURANCE: 03:52
c ATC ENDURANCE: 03:37
d ATC ENDURANCE: 04:12
372 (For this Question use Fuel Planning MRJT1) The aeroplane gross mass at top of id 2771 climb is 61500 kg . The distance to be flown is 385 NM at FL 350 and OAT $-54.3^{\circ} \mathrm{C}$. The wind component is 40 kt tailwind. Using long range cruise procedure what fuel is required?
a 2350 kg
b 2250 kg
c 2150 kg
d 2050 kg
373 (For this Question use Fuel Planning MRJT1) Find: Time, Fuel, Still Air Distance id 2773 and TAS for an enroute climb 280/.74 to FL 350. Given: Brake release mass 64000 kg , ISA $+10^{\circ} \mathrm{C}$, airport elevation 3000 ft
a 25 min, 1875 kg , 148 Nautical Air Miles (NAM), 391 kt
b 26 min, 2050 kg, 157 Nautical Air Miles (NAM), 399 kt
c 20 min, $1750 \mathrm{~kg}, 117$ Nautical Air Miles (NAM), 288 kt
d 26 min, $1975 \mathrm{~kg}, 157$ Nautical Air Miles (NAM), 399 kt
374 For flight planning purposes the landing mass at alternate is taken as:
id 4370
a Landing Mass at destination plus Alternate Fuel.
b Zero Fuel Mass plus Final Reserve Fuel.
c Zero Fuel Mass plus Final Reserve Fuel and Alternate Fuel.
d Zero Fuel Mass plus Final Reserve Fuel and Contingency Fuel.
375 Given: Maximum allowable take-off mass 64400 kg , Maximum landing mass 56200 id 4552 kg , Maximum zero fuel mass 53000 kg , Dry operating mass 35500 kg , Traffic load 14500 kg , Trip fuel 4900 kg , Minimum Take-off Fuel 7400 kg Find: Maximum allowable take-off fuel
a 11400 kg
b 11100 kg
c 14400 kg
d 8600 kg

376 Given: Maximum allowable take-off mass 64400 kg , Maximum landing mass 56200 id 4553 kg , Maximum zero fuel mass 53000 kg , Dry operating mass 35500 kg , Traffic load 14500 kg , Trip fuel 4900 kg , Take-off fuel 7400 kg Find: Maximum additional load
a 5600 kg
b 4000 kg
c 7000 kg
d 3000 kg
377 (For this Question use Fuel Planning MRJT1) Planning an IFR-flight from Paris to
id 4559 London for a twin jet aeroplane. Given: Estimated Take-off Mass (TOM) 52000 kg , Airport elevation $387 \mathrm{ft}, \mathrm{FL} 280$, W/V $280^{\circ} / 40 \mathrm{kt}$, ISA-Deviation $-10^{\circ} \mathrm{C}$, Average True Course 340° Find: Ground distance to the top of climb (TOC)
a 53 NM
b 56 NM
c 50 NM
d 47 NM
378 (For this Question use Fuel Planning MRJT1) Planning an IFR-flight from Paris
id 4560 (Charles de Gaulle) to London (Heathrow) for the twin jet aeroplane. Given:
Estimated Take-off Mass (TOM) 52000 kg , Airport elevation 387 ft , FL 280, W/V $280^{\circ} / 40 \mathrm{kt}$, ISA Deviation $-10^{\circ} \mathrm{C}$, Average True Course 340° Find: Time to the top of climb (TOC)
a 12 min
b 3 min
c 11 min
d 15 min
379 (For this Question use Fuel Planning MRJT1) Planning an IFR-flight from Paris to
id 4561 London for the twin jet aeroplane. Given: Estimated Take-off Mass (TOM) 52000 kg , Airport elevation 387 ft , FL 280, W/V 280 $/ 40 \mathrm{kt}$, ISA Deviation - $10^{\circ} \mathrm{C}$, Average True Course 340° Find: Fuel to the top of climb (TOC)
a 1100 kg
b 1000 lbs
c 1000 kg
d 1500 lbs
380 (For this Question use Fuel Planning MRJT1) Planning an IFR-flight from Paris to
id 4568 London for the twin jet aeroplane. Given: Gross mass 50000 kg , FL 280, ISA Deviation $-10^{\circ} \mathrm{C}$, Cruise procedure Mach 0.74 Determine the TAS
a 417 kt
b 440 kt
c 427 kt
d 430 kt
381 When calculating the fuel required to carry out a given flight, one must take into id 5523 account: 1 - the wind 2 - foreseeable airborne delays 3 - other weather forecasts 4 - any foreseeable conditions which may delay landing The combination which provides the correct statement is :
a 1-2-3
b 1-3
c 2-4
d 1-2-3-4

33.06.01.06. Computation of CP (critical point)

$\mathbf{3 8 2}$ Find the distance to the POINT OF SAFE RETURN (PSR). Given: maximum id 2769 useable fuel 15000 kg , minimum reserve fuel 3500 kg , Outbound: TAS 425 kt , head wind component 30 kt , fuel flow $2150 \mathrm{~kg} / \mathrm{h}$, Return: TAS 430 kt , tailwind component 20 kt , fuel flow $2150 \mathrm{~kg} / \mathrm{h}$
a 1463 NM
b 1143 NM
c 1125 NM
d 1491 NM
33.06.01.07. Completion of air traffic flight plan

383 On an ATC flight plan, an aircraft indicated as "H" for "Heavy"
id 5513
a has a certified take-off mass greater than or equal to 140000 kg
b has a certified landing mass greater than or equal to 136000 kg
c is of the highest wake turbulence category
d requires a runway length of at least 2000 m at maximum certified take-off mass

id 5846	On a VFR flight plan, the total estimated time is:

a the estimated time from take-off to overhead the destination airport
b the estimated time from take-off to overhead the destination airport, plus 15 minutes
c the estimated time from take-off to landing at the alternate airport
d the estimated time from engine start to landing at the destination airport
385 On an ATC flight plan, the letter " Y " is used to indicate that the flight is carried out id 5518 under the following flight rules.
a IFR followed by VFR
b VFR followed by IFR
c IFR
d VFR
386 On an ATC flight plan, to indicate that you will overfly the way-point TANGO at 350
id 5519 kts at flight level 280, you write:
a TANGO / K0350 FL280
b TANGO / N0350 F280
c TANGO / FL280 N0350
d TANGO / KT350 F280
387 On a ATC flight plan, to indicate that you will overfly the way-point ROMEO at 120
id 5528 kt at flight level 085 , you will write :
a ROMEO / K0120 FL085
b ROMEO / N0120 F085
c ROMEO / FL085 N0120
d ROMEO / F085 N0120

