GENERAL NAVIGATION

4090	61	In a remote indicating compass system the amount of deviation caused by aircraft magnetism and electrical circuits may be minimised by:	positioning the master unit in the centre of the aircraft	using a vertically mounted gyroscope	mounting the detector unit in the wingtip	the use of repeater cards	0	0	1	0
4091	61	(For this question use annex 061-12401A) What are the average magnetic course and distance between	$\begin{array}{rc} 091^{\circ} & - \\ 562 & \mathrm{NM} \end{array}$	$\begin{array}{rr} 105^{\circ} & - \\ 480 \mathrm{NM} \end{array}$	$\begin{array}{r} 105^{\circ}- \\ 562 \mathrm{NM} \end{array}$	$\begin{array}{rc} 091^{\circ} & - \\ 480 \mathrm{NM} \end{array}$	0	0	1	0
4092	61	When decelerating on a westerly heading in the Northern hemisphere, the compass card of a direct reading magnetic compass will turn :	anti-clockwise giving an apparent tum towards the north	clockwise giving an apparent tum toward the south	anti-clockwise giving an apparent tum towards the south	clockwise giving an apparent tum towards the north	0	1	0	0
4093	61	The value of magnetic variation:	must be 0° at the magnetic equator	varies between a maximum of 45° East and 45° West	cannot exceed 90°	has a maximum of 180°	0	0	0	1
4094	61	(For this question use annex 061-2304A) The UTC of sunrise on 6 Decemberat WINNIPEG (Canada)	0930	0113	2230	1413	0	0	0	1
4095	61	(For this question use annexes 061-2305A and 061-2305B) When it is 1000 Standard Time in Kuwait, the Standard Time in Algeria is:	1200	1300	0700	0800	0	0	0	1
4096	61	The north and south magnetic poles are the only positions on the earth's surface where:	the value of magnetic variation equals 90°	a freely suspended compass needle will stand vertical	isogonals converge	a freely suspended compass needle will stand horizontal	0	1	0	0
4097	61	(For this question use annex 061-12400A) What are the average magnetic course and distance between 	$\begin{array}{rc} 118^{\circ} & - \\ 440 & \mathrm{NM} \end{array}$	$\begin{array}{r} 117^{\circ}- \\ 494 \mathrm{NM} \end{array}$	$\begin{array}{rc} 130^{\circ} & - \\ 440 & \mathrm{NM} \end{array}$	$\begin{array}{rr} \hline 131^{\circ} & - \\ 494 \mathrm{NM} \end{array}$	0	0	0	1
4098	61	On a Direct Mercator, rhumb lines are:	ellipses	curves convex to the equator	straight lines	curves concave to the equator	0	0	1	0
4099	61	What is the value of the convergence factor on a Polar Stereographic chart?	0.866	0.5	0.0	1.0	0	0	0	1
4100	61	Which one of the following describes the appearance of rhumb lines, except meridians, on a Polar Stereographic chart?	Ellipses around the Pole	Curves convex to the Pole	Straight lines	Curves concave to the Pole	0	0	0	1
4101	61	Which one of the following statements is correct concerning the appearance of great circles, with the exception of meridians, on a Polar Stereographic chart whose tangency is at the pole?	They are complex curves that can be convex and/or concave to the Pole	They are curves convex to the Pole	The higher the latitude the closer they approximate to a straight line	Any straight line is a great circle	0	0	1	0
4102	61	On a Lambert conformal conic chart, the distance between parallels of latitude spaced the same number of degrees apart :	expands between, and reduces outside, the standard parallels	is constant throughout the chart	reduces between, and expands outside, the standard parallels	is constant between, and expands outside, the standard parallels	0	0	1	0

4103	61	Which one of the following, concerning great circles on a Direct Mercator chart, is correct?	They are all curves concave to the equator	They approximate to straight lines between the standard parallels	They are all curves convex to the equator	With the exception of meridians and the equator, they are curves concave to the equator	0	0	0	1
4104	61	Parallels of latitude on a Direct Mercator chart are:	parallel straight lines equally spaced	arcs of concentric circles equally spaced	straight lines converging above the pole	parallel straight lines unequally spaced	0	0	0	1
4105	61	On a Direct Mercator chart, meridians are:	parallel, equally spaced, vertical straight lines	inclined, equally spaced, straight lines that meet at the nearer pole	parallel, unequally spaced, vertical straight lines	inclined, unequally spaced, curved lines that meet at the nearer pole	1	0	0	0
4106	61	Which is the highest latitude listed below at which the sun will rise above the horizon and set every day?	66°	68°	72°	62°	1	0	0	0
4107	61	The angle between Magnetic North and Compass North is called:	compass deviation	compass error	magnetic variation	alignment error	1	0	0	0
4108	61	A straight line on a Lambert Conformal Projection chart for normalflight planning purposes:	is approximatel y a Great Circle	is a Loxodromic line	is a Rhumb line	can only be a parallel of latitude	1	0	0	0
4109	61	A Rhumb line is :	a line convex to the nearest pole on a Mercator proj ection	a line on the surface of the earth cutting all meridians at the same angle	the shortest distance between two points on a Polyconic projection	any straight line on a Lambert projection	0	1	0	0
4110	61	Contour lines on aeronautical maps and charts connect points:	having the same elevation above sea level	with the same variatio n	having the same longitude	of equal latitude	1	0	0	0
4111	61	(For this question use annex 061-1828A and the dat a for 1215 UTC) 1215 UTC LAJES VORTAC ($38^{\circ} 46^{\prime} \mathrm{N} 027^{\circ} 05^{\prime} \mathrm{W}$) RMI reads 178°,	$\begin{aligned} & 41^{\circ} 00^{\prime} \mathrm{N} \\ & 028^{\circ} 10^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & 41^{\circ} 05^{\prime} \mathrm{N} \\ & 027^{\circ} 50^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & 40^{\circ} 55^{\prime} \mathrm{N} \\ & 027^{\circ} 55^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & 40^{\circ} 50^{\prime} \mathrm{N} \\ & 027^{\circ} 40^{\prime} \mathrm{W} \end{aligned}$	0	0	1	0
4112	61	A chart has the scale 1:1000000. From A to B on the chart measures 1.5 inches (one inch equals 2.54 centimetres), the distance from A to B in NM is :	20.6	38.1	44.5	54.2	1	0	0	0
4113	61	The angle between the plane of the ecliptic and the plane of equator is approximately :	23.5°	25.3°	27.5°	66.5°	1	0	0	0
4114	61	A ground feature appears 30° to the left of the centre line of the CRT of an airborne weather radar. If the heading of the aircraft is $355^{\circ}(\mathrm{M})$ and the magnetic variation is 15° East, the true bearing of the aircraft from the feature is:	310°	130°	160°	220°	0	0	10	0
4115	61	On which of the following chart projections is it NOT possible to represent the north or south poles?	Transverse Mercator	Polar stereographi C	Direct Mercator	Lambert's conformal	0	0	10	0
4116	61	The chart distance between meridians 10° apart at latitude 65° North is 3.75 inches. The chart scale at this latitude approximates:	1:6000 000	1:2500 000	1:3000 000	1:5000 000	0	0	0	1

4117	61	(For this question use annex 061-1818A) Assume a North polar stereographic chart whose grid is aligned with the Greenwich meridian. An aircraft flies from the geographic North pole for a distance of 480 NM along the $110^{\circ} \mathrm{E}$ meridian, then follows a grid track	$\begin{aligned} & 70^{\circ} 15^{\prime \prime} \mathrm{N} \\ & 080^{\circ} \mathrm{E} \end{aligned}$	$\begin{aligned} & 80^{\circ} 00^{\prime} \mathrm{N} \\ & 080^{\circ} \mathrm{E} \end{aligned}$	$\begin{aligned} & 78^{\circ} 45^{\prime} \mathrm{N} \\ & 087^{\circ} \mathrm{E} \end{aligned}$	$\begin{aligned} & 79^{\circ} 15^{\prime} \mathrm{N} \\ & 074^{\circ} \mathrm{E} \end{aligned}$	0	1	0
4118	61	Some inertial reference and navigation systems are known as "strapdown". This means that:	only the gyros, and not the acceleromete rs, become part of the unit's fixture to the aircraft struct ure	gyros and acceleromete rs are mounted on a stabilised platform in the aircraft	gyros and acceleromete rs need sat ellite information input to obtain a vertical reference	the gyroscopes and acceleromete rs become part of the unit's fixture to the aircraft struct ure	0	0	0
4119	61	As the INS position of the departure aerodrome, coordinates $35^{\circ} 32.7^{\prime} \mathrm{N} 139^{\circ} 46.3^{\prime} \mathrm{W}$ are input instead of $35^{\circ} 32.7^{\prime} \mathrm{N}$ $139^{\circ} 46.3^{\prime} \mathrm{E}$. When the aircraft subsequently passes point $52^{\circ} \mathrm{N} 180^{\circ} \mathrm{W}$, the longitude value shown on the INS will be:	080 ${ }^{\circ} 27.4^{\prime} \mathrm{W}$	099³2.6'W	099 ${ }^{\circ} 32.6^{\prime} \mathrm{E}$	080 ${ }^{\circ} 27.4{ }^{\prime} \mathrm{E}$	0	1	00
4120	61	In order to maintain an accurate vertical using a pendulous system, an aircraft inertial platform incorporates a device:	without damping and a period of 84.4SEC	with damping and a period of 84.4 SEC	with damping and a period of 84.4 MIN	without damping and a period of 84.4 MIN	0	-	10
4121	61	On a Transverse Mercator chart, scale is exactly correct along the:	meridian of tangency	Equator, parallel of origin and prime vertical	datum meridian and meridian perpendicula r to it	prime meridian and the equator	1	0	00
4122	61	On a Lambert Conformal Conic chart earth convergency is most accurately represented at the:	parallel of origin	north and south limits of the chart	standard parallels	Equator	1	0	0
4123	61	The total length of the $53^{\circ} \mathrm{N}$ parallel of latitude on a direct Mercator chart is 133 cm . What is the approximate scale of the chart at latitude $30^{\circ} \mathrm{S}$?	$\begin{aligned} & 1: 30000 \\ & 000 \end{aligned}$	$\begin{aligned} & 1: 18000 \\ & 000 \end{aligned}$	$\begin{aligned} & 1: 21000 \\ & 000 \end{aligned}$	$\begin{aligned} & 1: 25000 \\ & 000 \end{aligned}$	0	0	0
4124	61	What is the chart distance between longitudes $179^{\circ} \mathrm{E}$ and $175^{\circ} \mathrm{W}$ on a direct Mercator chart with a scale of $1: 5000$ 000 at the equator?	167 mm	72 mm	133 mm	106 mm	0	0	10
4125	61	The constant of the cone, on a Lambert chart where the convergence angle between longitudes $010^{\circ} \mathrm{E}$ and $030^{\circ} \mathrm{W}$ is 30°, is:	0.50	0.64	0.75	0.40	0	0	10
4126	61	The platform of an inertial navigation system (INS) is maintained at right angles to the local vertical by applying corrections for the effects of:	gyroscopic inertia, earth rotation and real drift	vertical velocities, earth precession, centrifugal forces and transport drift	movement in the yawing plane, secondary precession and pendulous oscillation	aircraft manoeuvres, earth rotation, transport wander and coriolis	0	0	0
4127	61	(For this question use annex 061-2326A to 061-2326D) When it is 0600 Standard Time in Queensland (Australia) the Standard Time in Hawaii (USA) is:	0200	0600	1000	1200	0	0	10
4128	61	(For this question use annex 061-2325A to 061-2325D) An aircraft takes off from Guam at 2300 Standard Time on 30 April local date. After a flight of 11 HR 15 MIN it lands at Los Angeles (California).	$\begin{aligned} & 1715 \text { on } 30 \\ & \text { April } \end{aligned}$	$\begin{aligned} & 1215 \text { on } 1 \\ & \text { May } \end{aligned}$	$\begin{aligned} & 1315 \text { on } 1 \\ & \text { May } \end{aligned}$	$\begin{aligned} & 1615 \text { on } 30 \\ & \text { April } \end{aligned}$		0	0

4129	61	Isogonals converge at the:	Magnetic equator	North magnetic pole only	North and South magnetic poles only	North and South geographic and magnetic pol es	0	0	0	1
4130	61	When accelerating on an easterly heading in the Northem hemisphere, the compass card of a direct reading magnetic compass will turn :	anti-clockwise giving an apparent tum toward the south	clockwise giving an apparent tum toward the north	clockwise giving an apparent tum toward the south	anti-clockwise giving an apparent tum toward the north	0	1	0	0
4131	61	When tuming right from $330^{\circ}(\mathrm{C})$ to $040^{\circ}(\mathrm{C})$ in the northern hemisphere, the reading of a direct reading magnetic compass will:	over-indicate the tum and liquid swirl will decrease the effect	under-indicat e the turn and liquid swirl will decrease the effect	over-indicate the tum and liquid swirl will increase the effect	under-indicat e the turn and liquid swirl will increase the effect	0	0	0	1
4132	61	An aircraft in the northern hemisphere makes an accurate rate one turn to the right/starboard. If the initial heading was 330°, after 30 seconds of the turn the direct reading magnetic compass should read:	060 ${ }^{\circ}$	$\begin{aligned} & \text { more than } \\ & 060^{\circ} \end{aligned}$	more or less than 060° depending on the pendulous suspension used	$\left\lvert\, \begin{aligned} & \text { less than } \\ & 060^{\circ} \end{aligned}\right.$	0	0	0	1
4133	61	The horizontal component of the earth's magnetic field:	weakens with increasing distance from the magnetic poles	weakens with increasing distance from the nearer magnetic pole	is approximatel y the same at all magnetic latitudes less than 60°	is approximatel y the same at magnetic latitudes $50^{\circ} \mathrm{N}$ and $50^{\circ} \mathrm{S}$	0		0	1
4134	61	A line drawn on a chart which joins all points where the value of magnetic variation is zero is called an:	agonic line	aclinic line	isogonal	isotach	1	0	0	0
4135	61	A Lambert conformal conic projection, with two standard parallels:	shows lines of longitude as parallel straight lines	the scale is only correct along the standard parallels	shows all great circles as straight lines	the scale is only correct at parallel of origin	0	1-1	1-1	0
4136	61	On a Lambert Conformal chart the distance between meridians 5° apart along latitude 37° North is 9 cm . The scale of the chart at that parallel approximates:	1:2000 000	1:6000 000	1:5000 000	1:3750000	0	0	1	0
4137	61	On the 27 th of February, at $52^{\circ} \mathrm{S}$ and $040^{\circ} \mathrm{E}$, the sunrise is at 0243 UTC. On the same day, at $52^{\circ} \mathrm{S}$ and $035^{\circ} \mathrm{W}$, the sunrise is at:	0523 UTC	0743 UTC	0243 UTC	2143 UTC	0	1	0	0
4138	61	An aeroplane flies from $\mathrm{A}\left(59^{\circ} \mathrm{S} 142^{\circ} \mathrm{W}\right)$ to $\mathrm{B}\left(61^{\circ} \mathrm{S} 148^{\circ} \mathrm{W}\right)$ with a TAS of 480 kt . The autopilot is engaged and coupled with an Inertial Navigation System in which AB track is active.	varies by 10°	decreases by 6°	varies by 4°	increases by 5°	0	0	0	1
4139	61	The rhumb-line distance between points $\mathrm{A}\left(60^{\circ} 00^{\prime} \mathrm{N}\right.$ $002^{\circ} 30^{\prime} \mathrm{E}$) and $\mathrm{B}\left(60^{\circ} 00^{\prime} \mathrm{N} 007^{\circ} 30^{\prime} \mathrm{W}\right)$ is:	300 NM	450 NM	600 NM	150 NM	1	0	0	0
4140	61	An aircraft is over position $\mathrm{HO}\left(55^{\circ} 30^{\prime} \mathrm{N} 060^{\circ} 15^{\prime} \mathrm{W}\right)$, where YYR VOR ($53^{\circ} 30^{\prime} \mathrm{N} 060^{\circ} 15 \mathrm{~W}$) can be received. The magnetic variation is $31^{\circ} \mathrm{W}$ at HO and $28^{\circ} \mathrm{W}$ at YYR . What is the radialfrom YYR?	031°	332°	028 ${ }^{\circ}$	208°	0	0	1	0
4141	61	Given: $\begin{aligned} & \mathrm{TAS}=485 \mathrm{kt} \\ & \mathrm{OAT}=\mathrm{ISA}+10^{\circ} \mathrm{C} \end{aligned}$	0.87	0.825	0.90	0.85	0	1	0	0

4142	61	Given: A polar stereographic chart whose grid is aligned with the zero meridian. Grid track 344°,	099	1279°	049	1229°	0	0	0	1
4143	61	For a distance of 1860 NM between Q and R, a ground speed "out" of 385 kt , a ground speed "back" of 465 kt and an endurance of 8 HR (excluding reserves) the distance from Q to the point of safe retum (PSR) is:	1685 NM	1532 NM	930 NM	1865 NM	1	0	0	0
4144	61	An aircraft travels from point A to point B, using the autopilot connected to the aircraft's inertial system. The coordinates of $\mathrm{A}\left(45^{\circ} \mathrm{S} 010^{\circ} \mathrm{W}\right)$ and $\mathrm{B}\left(45^{\circ} \mathrm{S} 030^{\circ} \mathrm{W}\right)$ have been entered. The true course of the aircraft on its arrival at B, to the nearest degree, is:	277°	$284{ }^{\circ}$	263°	270°	1	0	0	0
4145	61	The constant of cone of a Lambert conformal conic chart is quoted as 0.3955. At what latitude on the chart is earth convergency correctly	68 ${ }^{\circ} 25^{\prime}$	21 ${ }^{\circ} 35^{\prime}$	23¹8'	66º ${ }^{\circ}$ '	0	0	1	0
4146	61	The duration of civil twilight is the time:	agreed by the internatio nal aeronautical authorities which is 12 minutes	needed by the sun to move from the apparent height of 0° to the apparent height of 6°	between sunset and when the centre of the sun is 12° below the true horizon	between sunset and when the centre of the sun is 6° below the true horizon	0	0	0	1
4147	61	The Great Circle bearing of ' $\mathrm{B}^{\prime}\left(70^{\circ} \mathrm{S} 060^{\circ} \mathrm{E}\right)$, from ' $\mathrm{A}^{\prime}\left(70^{\circ} \mathrm{S}\right.$ $030^{\circ} \mathrm{W}$, is approximately:	$150^{\circ}(\mathrm{T})$	090 ${ }^{\circ}$ (T)	$315^{\circ}(\mathrm{T})$	135° (T)	0	0	0	1
4148	61	In a navigation chart a distance of 49 NM is equal to 7 cm . The scale of the chart is approximately:	1:7000 000	1:1300 000	1:700000	1:130000	0	1	0	0
4149	61	At $60^{\circ} \mathrm{N}$ the scale of a direct Mercator chart is $1: 3000000$. What is the scale at the equator?	1:3000 000	1:3500 000	1:1500 000	1:6000 000	0	0	0	1
4150	61	During initial alignment an inertial navigation system is north aligned by inputs from:	horizontal acceleromete rs and the east gyro	the aircraft remote reading compass system	computer matching of measured gravity magnitude to gravity magnitude of initial alignment	vertical acceleromete rs and the north gyro	1	0	0	0
4151	61	An aircraft is flying with the aid of an inertial navigation system (INS) connected to the autopilot. The following two points have been entered in the INS computer: WPT 1: $60^{\circ} \mathrm{N} 030^{\circ} \mathrm{W}$ WPT 2: $60^{\circ} \mathrm{N} 020^{\circ} \mathrm{W}$ When $025^{\circ} \mathrm{W}$ is passed the latitude shown on the display unit of the inertial naviaation svstem will be:	$60^{\circ} 00.0^{\prime} \mathrm{N}$	$59^{\circ} 49.0^{\prime} \mathrm{N}$	$6^{\circ}{ }^{\circ} 11.0^{\prime} \mathrm{N}$	$60^{\circ} 05.7^{\prime} \mathrm{N}$	0	0	0	1
4152	61	The azimuth gyro of an inertial unit has a drift of $0.01^{\circ} / \mathrm{HR}$. After a flight of 12 HR with a ground speed of 500 kt , the error on the aeroplane position is approximately :	6 NM	60 NM	12 NM	1 NM	0	0	1	0
4153	61	The drift of the azimuth gyro on an inertial unit induces an error in the position given by this unit. "t" being the elapsed time.	proportional to t /2	sinusoîdal	proportional to t	proportional to the square of time, t^{2}	0	-	1	0
4154	61	With reference to inertial navigation systems, a TAS input is:	required to provide a W $/ V$ read out	not required	required for Polar navigation	required for rhumb line navigation	1	0	0	0

\square

4155	61	Given: $\begin{aligned} & \mathrm{AD}=\text { Air distance } \\ & \mathrm{GD}=\text { Ground distance } \\ & \text { TAS = True Airspeed } \end{aligned}$	$\begin{aligned} & \text { GD = (AD X } \\ & \text { GS)/TAS } \end{aligned}$	$\begin{aligned} & \mathrm{GD}=(\mathrm{AD}- \\ & \mathrm{TAS}) / \mathrm{TAS} \end{aligned}$	$\begin{aligned} & \text { GD = AD X } \\ & \text { (GS } \\ & \text {-TAS)/GS } \end{aligned}$	$\begin{aligned} & \text { GD }= \\ & \text { TAS/(GS X } \\ & \text { AD) } \end{aligned}$	1	0
4156	61	(For this question use annex 061-12583A) Given: SHA VOR (N5243.3 W00853.1) radial 143°,	$\begin{aligned} & \hline \text { N5210 } \\ & \text { W00800 } \end{aligned}$	$\begin{aligned} & \text { N5155 } \\ & \text { W00810 } \end{aligned}$	$\begin{aligned} & \text { N5205 } \\ & \text { W00805 } \end{aligned}$	$\begin{aligned} & \text { N5200 } \\ & \text { W00800 } \end{aligned}$	1	0
4157	61	(For this question refer to annex 061-12604A) What feature is shown on the chart at position N5211	Connemara aerodrome	Punchestown aerodrome	KERRY/Farra nfore aerodrome	Waterford NDB	0	0
4158	61	(For this question use annex 061-12589A) Given: SHA VOR N5243.3 W00853.1 CRK VORN5150.4 W00829.7	$\begin{aligned} & \text { SHA } 205^{\circ} \\ & \text { CRK } 321^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA 033} \\ & \text { CRK } 149^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 212^{\circ} \\ & \text { CRK } 328^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 025^{\circ} \\ & \text { CRK } 141^{\circ} \end{aligned}$	0	0
4159	61	(For this question use annex 061-12588A) Given: SHA VOR/DME (N5243.3 W00853.1) radial 048\%/22 NM.	$\begin{aligned} & \hline \text { N5228 } \\ & \text { W00920 } \end{aligned}$	$\begin{aligned} & \text { N5300 } \\ & \text { W0830 } \end{aligned}$	$\begin{aligned} & \hline \text { N5258 } \\ & \text { W00825 } \end{aligned}$	$\begin{aligned} & \text { N5225 } \\ & \text { W00917 } \end{aligned}$	-	1
4160	61	(For this question use annex 061-12587A) Given: SHA VOR/DME (N5243.3 W00853.1) radial 025/49 NM.	$\begin{aligned} & \text { N5155 } \\ & \text { W00915 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { N5200 } \\ \text { W0925 } \end{array}$	$\begin{aligned} & \text { N5330 } \\ & \text { W00830 } \end{aligned}$	$\begin{aligned} & \text { N5328 } \\ & \text { W00820 } \end{aligned}$	0	0
4161	61	(For this question use annex 061-12586A) Given: SHA VOR/DME (N5243.3 W00853.1) radial $232^{\circ} / 32$ NM.	$\begin{aligned} & \text { N5228 } \\ & \text { W00935 } \end{aligned}$	$\begin{aligned} & \text { N5303 } \\ & \text { W00810 } \end{aligned}$	$\begin{aligned} & \hline \text { N5220 } \\ & \text { W00930 } \end{aligned}$	$\begin{aligned} & \text { N5305 } \\ & \text { W00815 } \end{aligned}$	0	0
4162	61	(For this question use annex 061-12591A) Given: SHA VOR N5243.3 W00853.1 CRK VOR N5150.4 W00829.7	$\begin{aligned} & \text { SHA 068} \\ & \text { CRK } 145^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 060^{\circ} \\ & \text { CRK } 138^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 240^{\circ} \\ & \text { CRK } 137^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 248^{\circ} \\ & \text { CRK } 325^{\circ} \end{aligned}$	0	0
4163	61	(For this question use annex 061-12584A) Given: SHA VOR/DME (N5243.3 W00853.1) radial 120\%35 NM.	$\begin{aligned} & \text { N5250 } \\ & \text { W00950 } \end{aligned}$	$\begin{aligned} & \text { N5230 } \\ & \text { W00800 } \end{aligned}$	$\begin{aligned} & \text { N5300 } \\ & \text { W00945 } \end{aligned}$	$\begin{aligned} & \text { N5225 } \\ & \text { W00805 } \end{aligned}$	0	-
4164	61	(For this question use annex 061-12592A) Given: SHA VOR N5243.3 W00853.1 CON VOR N5354.8 W00849.1	$\begin{aligned} & \text { SHA 042} \\ & \text { CON } 138^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 213^{\circ} \\ & \operatorname{CON} 310^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA 033 } \\ & \text { CON } 130^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 221^{\circ} \\ & \operatorname{CON} 318^{\circ} \end{aligned}$	1	0
4165	61	(For this question use annex 061-12582A) Given: SHA VOR (N5243.3 W00853.1) radial 129°,	$\begin{aligned} & \text { N5220 } \\ & \text { W00750 } \end{aligned}$	$\begin{aligned} & \text { N5215 } \\ & \text { W00755 } \end{aligned}$	$\begin{aligned} & \text { N52 10 } \\ & \text { W00750 } \end{aligned}$	$\begin{aligned} & \text { N5205 } \\ & \text { W00755 } \end{aligned}$	1	0
4166	61	(For this question use annex 061-12581A) Given: SHA VOR (N5243.3 W00853.1) radial 120°,	$\begin{aligned} & \hline \text { N5230 } \\ & \text { W00800 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { N5225 } \\ \text { W00805 } \end{array}$	$\begin{array}{\|l\|} \hline \text { N5220 } \\ \text { W00750 } \end{array}$	$\begin{aligned} & \text { N5240 } \\ & \text { W00750 } \end{aligned}$	1	0
4167	61	(For this question use annex 061-12580A) Given: SHA VOR (N5243.3 W00853.1) radial 205°,	$\begin{array}{\|l\|} \hline \text { N5205 } \\ \text { W009 } 15 \end{array}$	$\begin{aligned} & \hline \text { N52 15 } \\ & \text { W00917 } \end{aligned}$	$\begin{aligned} & \text { N5210 } \\ & \text { W00910 } \end{aligned}$	N51 18 W00913	0	0

4168	61	(For this question use annex 061-12579A) Given: SHA VOR (N5243.3 W00853.1) radial 223°,	$\begin{aligned} & \hline \text { N5210 } \\ & \text { W00930 } \end{aligned}$	$\begin{aligned} & \hline \text { N5220 } \\ & \text { W00920 } \end{aligned}$	$\begin{aligned} & \hline \text { N5230 } \\ & \text { W00910 } \end{aligned}$	$\begin{aligned} & \hline \text { N52 10 } \\ & \text { W009 } 10 \end{aligned}$	0	1	0	0
4169	61	(For this question use annex 061-12578A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between CRN NDB (N5318.1 W00856.5) and EKN NDB (N5423.6	$\begin{array}{lll} 035^{\circ}-80 \\ N M & & \end{array}$	$042^{\circ}-83$ $N M$	$\begin{array}{ll} 036^{\circ}-81 \\ \text { NM } & \end{array}$	$\begin{array}{lll} 044^{\circ}-82 \\ N M & & \end{array}$	1	0	0	0
4170	61	(For this question use annex 061-12577A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between BAL VOR (N5318.0 W00626.9) and CFN NDB (N5502.6	$\begin{array}{lll} 327^{\circ}-124 \\ \text { NM } & \end{array}$	$\begin{array}{lll} 335^{\circ}-128 \\ \text { NM } & \end{array}$	$\begin{array}{ll} 325^{\circ}-126 \\ N M & \end{array}$	$\begin{array}{lll} 320^{\circ}-127 \\ N M & \end{array}$	1	0	0	0
4171	61	(For this question use annex 061-12585A) Given: SHA VOR/DME (N5243.3 W00853.1) radial 165\%/36 NM.	$\begin{aligned} & \hline \text { N5210 } \\ & \text { W00830 } \end{aligned}$	$\begin{aligned} & \text { N5208 } \\ & \text { W00840 } \end{aligned}$	$\begin{aligned} & \text { N5315 } \\ & \text { W00915 } \end{aligned}$	$\begin{aligned} & \hline \text { N5317 } \\ & \text { W00908 } \end{aligned}$	1	0	0	0
4172	61	Where and when are the IRS positions updated?	During flight IRS positions are automatically updated by the FMC	IRS positions are updated by pressing the 'Take-off/ Go -around' button at the start of the take-off roll	Updating is normally carried out by the crew when over-flying a known position (VOR station or NDB)	Only on the ground during the alignment procedure	0	0	0	1
4173	61	(For this question use annex 061-12560A) What is the radial and DME distance from CON VOR/DME (N5354.8 W00849.1) to position N5330 W00930?	$\begin{aligned} & 165^{\circ}-27 \\ & \text { NM } \end{aligned}$	$\begin{array}{ll} 335^{\circ}-43 \\ N M & \end{array}$	$\begin{aligned} & 025^{\circ}-38 \\ & \mathrm{NM} \end{aligned}$	$\begin{array}{ll} 233^{\circ}-35 \\ N M & \end{array}$	0	0	0	1
4174	61	(For this question refer to annex 061-12602A) Given: CON VOR/DME (N5354.8 W00849.1) Castlebar aerodrome (N5351 W00917)	$\begin{array}{lll} 265^{\circ}-17 \\ \text { NM } & \end{array}$	$\begin{aligned} & 077^{\circ}-18 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 257^{\circ}-17 \\ & \text { NM } \end{aligned}$	$\begin{array}{lll} 086^{\circ}-18 \\ \text { NM } & \end{array}$	1	0	0	0
4175	61	(For this question refer to annex 061-12601A) Given: SHA VOR/DME (N5243.3 W00853.1) Connemara aerodrome (N5314 W00928)	$\begin{array}{ll} 154^{\circ}-38 \\ \text { NM } & \end{array}$	$\begin{aligned} & 326^{\circ}-37 \\ & N M \end{aligned}$	$\begin{aligned} & 146^{\circ}-38 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 333^{\circ}-37 \\ & N M \end{aligned}$	0	0	0	1
4176	61	An aircraft is descending down a 12% slope whilst maintaining a GS of 540 kt . The rate of descent of the aircraft is approximately:	$4500 \mathrm{FT} / \mathrm{MIN}$	3900 FT/MIN	$6500 \mathrm{FT} / \mathrm{MIN}$	$650 \mathrm{FT} / \mathrm{MIN}$	0	0	1	0
4177	61	(For this question refer to annex 061-12600A) Given: SHA VOR/DME (N5243.3 W00853.1) Birr aerodrome (N5304 W00754)	$\begin{array}{ll} 240^{\circ}-41 \\ N M & \end{array}$	$\begin{aligned} & 068^{\circ}-41 \\ & \mathrm{NM} \end{aligned}$	$\begin{array}{ll} 248^{\circ}-42 \\ N M & \end{array}$	$\begin{aligned} & 060^{\circ}-42 \\ & \mathrm{Nm} \end{aligned}$	0	1	0	0
4178	61	(For this question use annex 061-12590A) Given: SHA VOR N5243.3 W00853.1 CRK VORN5150.4 W00829.7	$\begin{aligned} & \text { SHA } 124^{\circ} \\ & \text { CRK } 009^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 131^{\circ} \\ & \text { CRK } 017^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 304^{\circ} \\ & \text { CRK } 189^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 312^{\circ} \\ & \text { CRK } 197^{\circ} \end{aligned}$	0	1	0	0
4179	61	(For this question use annex 061-12598A) Given: CON VOR (N5354.8 W00849.1) DME 30 NM, CRN VOR (N5318.1 W00856.5) DME 25 NM,	$\begin{aligned} & \hline \text { N5330 } \\ & \text { W00820 } \end{aligned}$	$\begin{aligned} & \hline \text { N5343 } \\ & \text { W00925 } \end{aligned}$	$\begin{aligned} & \hline \text { N5335 } \\ & \text { W00925 } \end{aligned}$	$\begin{aligned} & \hline \text { N5337 } \\ & \text { W00820 } \end{aligned}$	-	-	0	-
4180	61	(For this question use annex 061-12574A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between WTD NDB (N521 1.3 W00705.0) and SLG NDB (N5416.7	$\begin{aligned} & 156^{\circ}-136 \\ & \text { NM } \end{aligned}$	$\begin{array}{lll} 164^{\circ}-138 \\ N M & & \\ \hline \end{array}$	$\begin{array}{lll} 336^{\circ}-137 \\ \text { NM } & \end{array}$	$\begin{array}{lll} 344^{\circ}-139 \\ \text { NM } & \end{array}$	0	0	1	0

4181	61	What is the source of magnetic variation information in a Flight Management System (FMS)?	Magnetic variation is calculated by each IRS based on the respective IRS position and the aircraft magnetic heading	Magnetic variation information is stored in each IRS memory; it is applied to the true heading calculated by the respective IR S	The main directional gyro which is coupled to the magnetic sensor (flux valve) positioned in the wingtip	The FMS calculates MH and MT from the FMC position	0	1	0	0
4182	61	(For this question use annex 061-12597A) Given: CRN VOR (N5318.1 W00856.5) DME 34 NM, SHA VOR (N5243.3 W00853.1) DME 26 NM,	$\begin{aligned} & \text { N5255 } \\ & \text { W00815 } \end{aligned}$	N5250 W0030	$\begin{aligned} & \text { N5305 } \\ & \text { W00930 } \end{aligned}$	$\begin{aligned} & \text { N5310 } \\ & \text { W00820 } \end{aligned}$	1	0		0
4183	61	(For this question use annex 061-12596A) Given: CRN VOR (N5318.1 W00856.5) DME 18 NM, SHA VOR (N5243.3 W00853.1) DME 30 NM,	$\begin{aligned} & \text { N5307 } \\ & \text { W00923 } \end{aligned}$	$\begin{aligned} & \text { N5355 } \\ & \text { W00825 } \end{aligned}$	$\begin{aligned} & \text { N5310 } \\ & \text { W00830 } \end{aligned}$	$\begin{aligned} & \hline \text { N5252 } \\ & \text { W00923 } \end{aligned}$	0	0	1-1	0
4184	61	(For this question use annex 061-12595A) Given: SHA VOR (N5243.3 W00853.1) DME 41 NM, CRK VOR (N5150.4 W00829.7) DME 30 NM,	$\begin{aligned} & \text { N5225 } \\ & \text { W00810 } \end{aligned}$	N5215 W00805	$\begin{aligned} & \text { N5205 } \\ & \text { W00915 } \end{aligned}$	$\begin{aligned} & \text { N5215 } \\ & \text { W00915 } \end{aligned}$	0	1-1		0
4185	61	(For this question use annex 061-12594A) Given: SHA VOR (N5243.3 W00853.1) DME 50 NM, CRK VOR (N5150.4 W00829.7) DME 41 NM,	$\begin{aligned} & \text { N5235 } \\ & \text { W00750 } \end{aligned}$	$\begin{aligned} & \text { N5200 } \\ & \text { W00935 } \end{aligned}$	$\begin{aligned} & \text { N5215 } \\ & \text { W00940 } \end{aligned}$	$\begin{aligned} & \text { N5215 } \\ & \text { W00745 } \end{aligned}$	0	1-1	-	0
4186	61	(For this question use annex 061-12593A) Given: SHA VOR N5243.3 W00853.1 CON VOR N5354.8 W00849.1	$\begin{aligned} & \text { SHA } 137^{\circ} \\ & \text { CON 046 } \end{aligned}$	$\begin{aligned} & \text { SHA } 317^{\circ} \\ & \text { CON } 226^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 145^{\circ} \\ & \text { CON } 055^{\circ} \end{aligned}$	$\begin{aligned} & \text { SHA } 325^{\circ} \\ & \text { CON } 235^{\circ} \end{aligned}$	-	-	-	1
4187	61	(For this question refer to annex 061-12599A) Given: CRK VOR/DME (N5150.4 W00829.7) Kerrv aerodrome (N5210.9 W00931.4)	$\begin{array}{lll} 119^{\circ}-44 \\ \text { NM } & & \end{array}$	$\begin{aligned} & 127^{\circ}-45 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 299^{\circ}-42 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 307^{\circ}-43 \\ & N M \end{aligned}$	-	0	-	1
4188	61	Which of the following lists, which compares an Inertial Reference System that utilises Ring Laser Gyroscopes (RLG) instead of conventional gyroscopes, is completely correct?	The platform is kept stable relativ e to the earth mathematicall y rather than mechanically but it has a longer 'spin up' time	It does not suffer from 'lock in' error and it is insensitive to gravitation al ('g') forces	There is little or no 'spin up' time and it does not suffer from 'lock in' error	There is little or no 'spin up' time and it is insensitive to gravitation al ('g') forces	0	0	0	1
4189	61	Gyrocompassing of an inertial reference system (IRS) is accomplished with the mode selector switched to:	ON	ALIGN	STBY	ATT/REF	0	1	0	0
4190	61	With reference to an inertial navigation system (INS), the initial great circle track between computer inserted waypoints will be displayed when the control display unit (CDU) is selected to:	HDG/DA	TK/GS	XTK/TKE	DSRTK/STS	0	0	0	1

419	61	Which of the following statement is correct concerning gyro-compassing of an inertial navigation system (INS)?	Gyro-compas sing of an INS is not possible in flight because it cannot differentiate between movement induced and misalignment induced accelerations	Gyro-compas sing of an INS is possible in flight because it can differentiate between movement induced and misalignment induced accelerations	Gyro-compas sing of an INS is possible in flight because it cannot differentiate between movement induced and misalignment induced accelerations	Gyro-compas sing of an INS is not possible in flight because it can differentiate between movement induced and misalignment induced accelerations	1	0	00	0
4192	61	During the initial alignment of an inertial navigation system (INS) the equipment:	will accept a 10° error in initial latitude and initial longitude	will not accept a 10° error in initial latitude but will accept a 10° error in initial longitude	will accept a 10° error in initial latitude but will not accept a 10° error in initial longitude	will not accept a 10° error in initial latitude or initial longitude	0	1	00	
4193	61	Double integration of the output from the east/west accelerometer of an inertial navigation system (INS) in the NAV MODE give:	velocity east/west	distance east/west	vehicle longitude	distance north/south	0	1	00	0
4194	61	(For this question use annex 061-12576A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between BAL VOR (N5318.0 W00626.9) and CRN NDB (N5318.1	$\begin{array}{lll} 268^{\circ}-91 \\ N M & & \end{array}$	$\begin{aligned} & 272^{\circ}-89 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 270^{\circ}-90 \\ & \text { NM } \end{aligned}$	$\begin{array}{ll} 278^{\circ}-89 \\ N M & \end{array}$	0	0	10	0
4195	61	The principle of 'Schuler Tuning' as applied to the operation of Inertial Navigation Systems/ Inertial Reference Systems is applicable to:	both gyro-stabilise d platform and 'strapdown' systems	only gyro-stabilise d systems	both gyro-stabilise d and laser gyro systems but only when operating in the non 'strapdown' mode	only to 'strapdown' laser gyro systems	1	0		
4196	61	The automatic flight control system is coupled to the guidance outputs from an inertial navigation system. Which pair of latitudes will give the greatest difference between initial track read-out and the average true course given, in each case, a difference of longitude of 10° ?	$\begin{aligned} & 60^{\circ} \mathrm{N} \text { to } \\ & 60^{\circ} \mathrm{N} \end{aligned}$	$\begin{aligned} & 60^{\circ} \mathrm{N} \text { to } \\ & 50^{\circ} \mathrm{N} \end{aligned}$	$\begin{aligned} & 30^{\circ} \mathrm{S} \text { to } \\ & 30^{\circ} \mathrm{N} \end{aligned}$	$30^{\circ} \mathrm{S}$ to $25^{\circ} \mathrm{S}$	1	0	00	0
4197	61	The resultant of the first integ ration of the output from the east/west accelerometer of an inertial navigation system (INS) in NAV MODE is:	change of longitude	vehicle longitude	departure	velocity along the local parallel of latitude	0	-	0	1
4198	61	One of the errors inherent in a ring laser gyroscope occurs at low input rotation rates tending towards zero when a phenomenon known as 'lock-in' is experienced. What is the name of the technique, effected by means of a piezo-electric motor, that is used to correct this error?	cavity rotation	zero drop	beam lock	dither	0	0	01	1
4199	61	(For this question use annex 061-9442A) Complete line 6 of the 'FLIGHT NAVIGATION LOG', positions 'L' to 'M'.	HDG 064° ETA 1449 UTC	$\begin{aligned} & \text { HDG } 075^{\circ}- \\ & \text { ETA } 1452 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 070^{\circ}- \\ & \text { ETA } 1459 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 075^{\circ}- \\ & \text { ETA } 1502 \\ & \text { UTC } \end{aligned}$	0	0	01	-
4200	61	(For this question use annex 061-9441A) Complete line 5 of the 'FLIGHT NAVIGATIONLOG', positions 'J' to 'K'.	$\begin{aligned} & \text { HDG } 337^{\circ}- \\ & \text { ETA } 1422 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 320^{\circ}- \\ & \text { ETA } 1412 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 337^{\circ}- \\ & \text { ETA } 1322 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 320^{\circ}- \\ & \text { ETA } 1432 \\ & \text { UTC } \end{aligned}$	1	0	0-1	0

4201	61	(For this question use annex 061-9440A) Complete line 4 of the 'FLIGHT NAVIGATION LOG', positions 'G' to 'H'.	$\begin{aligned} & \text { HDG } 344^{\circ}- \\ & \text { ETA } 1303 \\ & \text { UTC } \end{aligned}$	HDG $344^{\circ}-$ ETA 1336 UTC	$\begin{aligned} & \text { HDG } 354^{\circ}- \\ & \text { ETA } 1326 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 034^{\circ} \text { - } \\ & \text { ETA } 1336 \\ & \text { UTC } \end{aligned}$	0	1	0	0
4202	61	(For this question use annex 061-9439A) Complete line 3 of the 'FLIGHT NAVIGATIONLOG', positions 'E' to 'F'.	$\begin{aligned} & \text { HDG } 095^{\circ}- \\ & \text { ETA } 1155 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 106^{\circ}- \\ & \text { ETA } 1215 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 115^{\circ}- \\ & \text { ETA } 1145 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 105^{\circ}- \\ & \text { ETA } 1205 \\ & \text { UTC } \end{aligned}$	0	0	0	1
4203	61	The resultant of the first integration from the north/south accelerometer of an inertial navigation system (INS) in the NAV MODE is:	change latitude	latitude	velocity along the local meridian	groundspeed	0	0	1	0
4204	61	Given: ILS GP angle = 3.5 DEG ,	900 FT/MIN	$1000 \mathrm{FT} / \mathrm{MIN}$	$700 \mathrm{FT} / \mathrm{MIN}$	800 FT/MIN	1	0	0	0
4205	61	(For this question refer to annex 061-12605A) What feature is shown on the chart at position N5212	Clonbullogue aerodrome	TUSKAR ROCKLT.H. NDB	WTD NDB	KERRY/Farra nfore aerodrome	0	1	0	0
4206	61	(For this question use annex 061-12573A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between WTD NDB (N521 1.3 W00705.0) and FOY NDB (N5234.0	$\begin{aligned} & 286^{\circ}-81 \\ & N M \end{aligned}$	$\begin{aligned} & 294^{\circ}-80 \\ & \text { NM } \end{aligned}$	$\begin{array}{ll} 075^{\circ}-81 \\ \text { NM } & \end{array}$	$\begin{aligned} & 277^{\circ}-83 \\ & \text { NM } \end{aligned}$	1	0	0	0
4207	61	(For this question use annex 061-12572A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between SLG NDB (N5416.7 W00836.0) and CFN NDB (N5502.6	$\begin{array}{ll} 011^{\circ}-47 \\ \text { NM } & \end{array}$	$\begin{array}{ll} \hline 020^{\circ}-46 \\ N M & \end{array}$	$\begin{array}{ll} 348^{\circ}-46 \\ N M & \end{array}$	$\begin{aligned} & 191^{\circ}-45 \\ & \text { NM } \end{aligned}$	1	0	0	0
4208	61	(For this question use annex 061-12571A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between CON VOR (N5354.8 W00849.1) and BEL VOR (N5439.7	$\begin{array}{ll} 113^{\circ}-97 \\ \text { NM } & \\ \hline \end{array}$	$\begin{aligned} & 293^{\circ}-98 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 063^{\circ}-101 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 071^{\circ}-100 \\ & N M \end{aligned}$	0	-	1	0
4209	61	(For this question use annex 061-12570A) What is the average track (${ }^{\circ} \mathrm{M}$) and distance between CRN NDB (N531 8.1 W00856.5) and BEL VOR (N5439.7	$\begin{aligned} & 089^{\circ}-95 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 229^{\circ}-125 \\ & \text { NM } \end{aligned}$	$\begin{array}{lll} 237^{\circ}-130 \\ \text { NM } & & \\ \hline \end{array}$	$\begin{aligned} & 057^{\circ}-126 \\ & \text { NM } \end{aligned}$	0	0	0	1
4210	61	(For this question use annex 061-12569A) What is the average track (${ }^{\circ} \mathrm{M}$) and distance between BAL VOR (N5318.0 W00626.9) and SLG NDB (N54 16.7	$\begin{array}{ll} \hline 262^{\circ}-86 \\ N M & \end{array}$	$\begin{aligned} & 128^{\circ}-99 \\ & \text { NM } \end{aligned}$	$\begin{array}{ll} 308^{\circ}-98 \\ N M & \end{array}$	$\begin{aligned} & 316^{\circ}-96 \\ & \text { NM } \end{aligned}$	0	0	0	1
4211	61	The following points are entered into an inertial navigation system (INS). WPT 1: $\quad 60^{\circ} \mathrm{N} 30^{\circ} \mathrm{W}$ WPT 2: $\quad 60^{\circ} \mathrm{N} 20^{\circ} \mathrm{W}$ WPT 3: $\quad 60^{\circ} \mathrm{N} \quad 10^{\circ} \mathrm{W}$ The inertial navigation system is connected to the automatic	zero	a 9° increase	a 4° decrease	a 9° decrease	0			1
4212	61	Given: aircraft height 2500 FT, ILS GP angle 3°.	8.3 NM	7.0 NM	13.1 NM	14.5 NM	1	0	0	0
4213	61	The automatic flight control system (AFCS) in an aircraft is coupled to the guidance outputs from an inertial navigation system (INS) and the aircraft is flying from waypoint No. 2 $\left(60^{\circ} 00^{\prime} \mathrm{S} 070^{\circ} 00^{\prime} \mathrm{W}\right)$ to No. 3 ($60^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 00^{\prime} \mathrm{W}$). Comparing the initial track $\left({ }^{\circ} \mathrm{T}\right)$ at $070^{\circ} 00^{\prime} \mathrm{W}$ and the final track (${ }^{\circ} \mathrm{T}$) at $080^{\circ} 00^{\prime} \mathrm{W}$, the difference between them is that the initial track is approximately:	9° greater than the final one	5° less than the final one	9° less than the final one	5° greater than the final one	0	0	1	0
4214	61	Given: $\text { TAS = } 197 \mathrm{kt},$ True course $=240^{\circ}$, $\mathrm{W} / \mathrm{V}=180 / 30 \mathrm{kt} .$ Descent is initiated at FL 220 and completed at FL 40.	$800 \mathrm{FT} / \mathrm{MIN}$	950 FT/MIN	$1500 \mathrm{FT} / \mathrm{MIN}$	1400 FT/MIN	0	0	0	1

4215	61	What is the effect on the Mach number and TAS in an aircraft that is climbing with constant CAS?	Mach number rema ins constant; TAS increases	Mach number decr eases; TAS decreases	Mach number incre ases; TAS remains constant	Mach number incre ases; TAS increases	0	0
4216	61	Which of the following statements conceming the earth's magnetic field is completely correct?	Dip is the angle between total magneti c field and vertical field component	The blue pole of the earth's magnetic field is situated in North Canada	At the earth's magnetic equator, the inclination varies depending on whether the geograhic equator is north or south of the magnetic equator	The earth's magnetic field can be classified as transient, semi-perman ent or permanent	0	1
4217	61	Which of the following correctly lists the order of available selections of the Mode Selector switches of an inertial reference system (IRS) mode panel?	$\begin{aligned} & \text { OFF - } \\ & \text { ALIGN - } \\ & \text { NAV - ATT } \end{aligned}$	$\begin{aligned} & \text { OFF - ON - } \\ & \text { ALIGN - } \\ & \text { NAV } \end{aligned}$	$\begin{aligned} & \hline \text { OFF - } \\ & \text { STBY - } \\ & \text { ALIGN } \\ & \text { NAV } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OFF - } \\ & \text { ALIGN - } \\ & \text { ATT - NAV } \end{aligned}$	1	0
4218	61	The automatic flight control system (AFCS) in an aircraft is coupled to the guidance outputs from an inertial navigation system (INS). The aircraft is flying between inserted waypoints No. 3 ($55^{\circ} 00^{\prime} \mathrm{N} 020^{\circ} 00^{\prime} \mathrm{W}$) and No. 4 ($55^{\circ} 00^{\prime} \mathrm{N} 030^{\circ} 00^{\prime} \mathrm{W}$). With DSRTK/STS selected on the CDU, to the nearest whole degree, the initial track read-out from waypoint No. 3 will be:	266°	270°	274°	278°	0	
4219	61	(For this question use annex 061-12575A) What is the average track (${ }^{\circ} \mathrm{T}$) and distance between SHA VOR (N5243.3 W00853.1) and CON VOR (N5354.8	$\begin{array}{ll} 010^{\circ}-71 \\ \text { NM } & \end{array}$	$\begin{aligned} & 358^{\circ}-72 \\ & N M \end{aligned}$	$\begin{aligned} & 006^{\circ}-71 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 002^{\circ}-72 \\ & N M \end{aligned}$	0	0
4220	61	(For this question use annex 061-12568A) What is the average track (${ }^{\circ} \mathrm{M}$) and distance between KER NDB (N5210.9 W00931.5) and CRN NDB (N5318.1	$\begin{array}{ll} 205^{\circ}-71 \\ N M & \end{array}$	$\begin{array}{ll} 017^{\circ}-70 \\ \text { NM } & \end{array}$	$\begin{aligned} & 025^{\circ}-70 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 197^{\circ}-71 \\ & N M \end{aligned}$	0	0
4221	61	The direct reading magnetic compass is made aperiodic (dead beat) by:	using long magnets	pendulous suspension of the magnetic assembly	keeping the magnetic assembly mass close to the compass point and by using damping wires	using the lowest acceptable viscosity compass liquid	0	0
4222	61	(For this question refer to annex 061-12603A) Given: CON VOR/DME (N5354.8 W00849.1) Abbey Shrule aerodrome (N5335 W00739)	$\begin{aligned} & 296^{\circ}-46 \\ & N M \end{aligned}$	$\begin{aligned} & 304^{\circ}-47 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 124^{\circ}-46 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 116^{\circ}-47 \\ & N M \end{aligned}$	0	0
4223	61	What is the validity period of the 'permanent' dat a base of aeronautical information stored in the FMC In the B737-400 Flight Management System?	28 days	one calendar month	3 calendar months	14 days	1	0
4224	61	What indication, if any, is given in the B737-400 Flight Management System if radio updating is not available?	A waming message is displayed on the Flight Director System	No indication is given so long as the IRS positions rem ain within limits	A waming message is displayed on the EHSI and MFDU	A waming message is displayed on the IRS displays	0	0

4225	61	Which component of the B737-400 Flight Management System (FMS) is used to enter flight plan routeing and performance parameters?	Multi-Function Control Display Unit	Flight Management Computer	Inertial Reference System	Flight Director Syst em	1	0	0	0
4226	61	The purpose of the Flight Management System (FMS), as for example installed in the B737-400, is to provide:	both manual navigation guidance and performa nce management	continuous automatic navigation guidance and performa nce management	manual navigation guidance and automati c performance management	continuous automatic navigation guidance as well as manual performance management	0	1	0	0
4227	61	How is the radio position determined by the FMC in the B737-400 Electronic Flight Instrument System?	DME/DME	DME/DME or VOR/DME	DME ranges and/ or VOR/ADF bearings	VOR/DME range and bearing	1	0	0	0
4228	61	A direct reading compass should be swung when:	the aircraft has made more than a stated number of landings	there is a large, and permanent, change in magnetic latitude	there is a large change in magnetic longitude	the aircraft is stored for a long period and is frequently moved	0	1	0	0
4229	61	In which of the following situations is the FMC present position of a B737-400 Electronic Flight Instrument System likely to be least accurate?	Just after take-off	At top of climb	At top of descent	On final approach	1	0	0	0
4230	61	The annunciator of a remote indicating compass system is used when:	synchronising the magnetic and gyro compass elements	compensating for deviation	setting local magnetic variation	setting the 'heading' pointer	1	0	0	0
4231	61	The convergence factor of a Lambert conformal conic chart is quoted as 0.78535 . At what latitude on the chart is earth convergency correctly	38¹5'	$51^{\circ} 45{ }^{\prime}$	$52^{\circ} 05^{\prime}$	80³9'	0	1	0	0
4232	61	At 47° North the chart distance between meridians 10° apart is 5 inches.	1:8000 000	1:3000 000	1:2500 000	1:6000 000	0	0	0	1
4233	61	On a Direct Mercator chart a great circle will be represented by a:	curve convex to the equator	straight line	curve concave to the equator	complex curve	0	0	1	0
4234	61	An aircraft in the northern hemisphere is making an accurate rate one turn to the right. If the initial heading was 135°, after 30 seconds the direct reading magnetic compass should read:	225°	$\begin{aligned} & \text { less than } \\ & 225^{\circ} \end{aligned}$	more or less than 225° depending on the pendulous suspension used	more than 225°	0	0	0	1
4235	61	When accelerating on a westerly heading in the northern hemisphere, the compass card of a direct reading magnetic compass will turn:	clockwise giving an apparent tum towards the north	clockwise giving an apparent tum towards the south	anti-clockwise giving an apparent tum towards the north	anti-clockwise giving an apparent tum towards the south		0	-	0
4236	61	On a Lambert conformal conic chart, with two standard parallels, the quoted scale is correct:	along the prime meridian	along the two standard parallels	in the area between the standard parallels	along the parallel of origin	0	1	0	-
4237	61	(For this question refer to annex 061-12615A) Which of the aeronautical chart symbols indicates a DME?	6	2	3	5	0	1	0	0
4238	61	(For this question refer to annex 061-12623A) Which aeronautical chart symbol indicates a Control Zone	2	3	4	5	0	1	0	0
4239	61	(For this question refer to annex 061-12621A) Which aeronautical chart symbol indicates a Flight	1	3	4	5	1	0	0	0

4240	61	(For this question refer to annex 061-1 2620A) Which of the aeronautical chart symbols indicates a	3	6	7	1	0	0	10	0
4241	61	(For this question refer to annex 061-12619A) Which of the aeronautical chart symbols indicates a TACAN?	6	7	1	2	1	0	0	0
4242	61	(For this question refer to annex 061-12618A) Which of the aeronautical chart symbols indicates a basic,	5	6	2	3	1	0	0	0
4243	61	In the B737-400 Flight Management System the CDUs are used during preflight to:	manually initialize the IRSs, FMC and Autothrottle with dispatch information	manually initialize the IRSs and FMC with dispatch information	automatically initialize the IRSs and FMC with dispatch information	manually initialize the Flight Director Syst em and FMC with dispatch information	0		1	
4244	61	(For this question refer to annex 061-12616A) Which of the aeronautical chart symbols indicates a VOR?	3	5	6	2	1	0	0	0
4245	61	(For this question refer to annex 061-12613A) Which of the following lists all the aeronautical chart symbols	VOR: NDB	civil aiport: ILS	NDB: ILS	civil airport: NDB	0	0	0	1
4246	61	(For this question refer to annex 061-12614A) Which of the aeronautical chart symbols indicates a	6	7	1	2	0	0	1	0
4247	61	Which of the following lists the first three pages of the FMC/CDU normally used to enter data on initial start-up of the B737-400 Electronic Flight Instrument System?	POS INIT RTE - IDENT	$\begin{array}{\|l\|} \hline \text { IDENT - RTE } \\ \hline \text { DEPARTURE } \end{array}$	POS INIT RTE - DEPARTUR E	IDENT - POS INIT - RTE	0	0	0	1
4248	61	Which FMC/CDU page nomally appears on initial power application to the B737-400 Electronic Fight Instrument System?	INITIAL	POS INIT	PERF INIT	IDENT	0	0	0	1
4249	61	Which of the following lists all the methods that can be used to enter 'Created Waypoints' into the CDU of a B737-400 Electronic Flight Instrument System?	Identifier bearing/dista nce; place distance/plac e distance; along-track displacement ; latitude and longitude	Identifier bearing/dista nce; place bearing/place bearing; along-track displacement ; latitude and longitude	Identifier bearing/dista nce; place bearing/place distance; along/acrosstrack displacement ; latitude and Iongitude	Identifier bearing/dista nce; place bearing/place bearing; latitude and longitude; waypoint name	0	1	0	
4250	61	Which of the following can all be stored as five letter waypoint identifiers through the CDU of a B737-400 Electronic Flight Instrument System?	Waypoint names; navaid frequencies; runway codes; airport ICAO identifiers	Waypoint names; navaid positions; airport ICAO identifiers; airport names	Waypoint names; navaid identifiers; runway numbers; airport ICAO identifiers	Airway names; navaid identifiers; airport names; waypoint code numbers	0	0	1	
4251	61	What are, in order of highest priority followed by lowest, the two levels of message produced by the CDU of the B737-400 Electronic Flight Instrument System?	Urgent and Routine	Priority and Alerting	Urgent and Advisory	Alerting and Advisory	0	0	0	1
4252	61	(For this question refer to annex 061-12617A) Which of the aeronautical chart symbols indicates an NDB?	2	3	4	6	0	0	1	0
4253	61	ATT Mode of the Inertial Reference System (IRS) is a back-up mode providing:	only attitude information	navigation information	altitude, heading and position information	only attitude and heading information		0		

4254	61	Permanent magnetism in aircraft arises chiefly from:	the combined effect of aircraft electrical equipment and the earth's magnetic field	the effect of intemal wiring and exposure to electrical stoms	hammering, and the effect of the earth's magnetic field, whilst under construction	exposure to the earth's magnetic field during normal operation	0	0	10
4255	61	An island appears 30° to the left of the centre line on an airbome weather radar display. What is the true bearing of the aircraft from the island if at the time of observation the aircraft was on a magnetic heading (MH) of 020° with the magnetic variation (VAR) $25^{\circ} \mathrm{W}$?	325°	145°	195 ${ }^{\circ}$	205°	0	1	00
4256	61	An island appears 30° to the right of the centre line on an airbome weather radar display. What is the true bearing of the aircraft from the island if at the time of observation the aircraft was on a magnetic heading (MH) of 355° with the magnetic variation (VAR) $15^{\circ} \mathrm{E}$?	130°	160°	190°	220°	0	0	01
4257	61	An island appears 45° to the right of the centre line on an airbome weather radar display. What is the true bearing of the aircraft from the island if at the time of observation the aircraft was on a magnetic heading (MH) of 215° with the magnetic variation (VAR) $21^{\circ} \mathrm{W}$?	329°	059°	101°	239°	0	1-10	00
4258	61	An island appears 60° to the left of the centre line on an airbome weather radar display. What is the true bearing of the aircraft from the island if at the time of observation the aircraft was on a magnetic heading (MH) of 276° with the magnetic variation (VAR) $10^{\circ} \mathrm{E}$?	086 ${ }^{\circ}$	226°	026 ${ }^{\circ}$	046 ${ }^{\circ}$	0	0	01
4259	61	Waypoints can be entered in an INS memory in different formats. In which of the following formats can waypoints be entered	bearing and distance	hexadecimal	by waypoints name	geographic coordinates	0	0	01
4260	61	Which of the following statements conceming the position indicated on the Inertial Reference System (IRS) display is correct?	The positions from the two IRSs are compared to obtain a'best position' which is displayed on the IRS	It is not updated once the IRS mode is set to NAV	It is constantly updated from informat ion obtained by the FMC	It is updated when 'go-around' is selected on take-off	-	1	0
4261	61	What additional information is required to be input to an Inertial Navigation System (INS) in order to obtain an W/V readout?	Mach Number	TAS	IAS	Altitude and OAT	0	1	00
4262	61	An aircraft departs from position $\mathrm{A}\left(04^{\circ} 10^{\prime} \mathrm{S} 178^{\circ} 22^{\prime} \mathrm{W}\right)$ and flies northward following the meridian for 2950 NM . It then flies westward along the parallel of latitude for 382 NM to position B.	$\begin{aligned} & 53^{\circ} 20^{\prime} \mathrm{N} \\ & 172^{\circ} 38^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & 45^{\circ} 00^{\prime} \mathrm{N} \\ & 172^{\circ} 38^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & 53^{\circ} 20^{\prime} \mathrm{N} \\ & 169^{\circ} 22 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 45^{\circ} 00^{\prime} \mathrm{N} \\ & 169^{\circ} 22 \mathrm{~W} \end{aligned}$	0	1	00
4263	61	The angle between the true great-circle track and the true rhumb-line track joining the following points: A $60^{\circ} \mathrm{S} 165^{\circ}$ W) $B\left(60^{\circ} S 177^{\circ} \mathrm{E}\right)$, at the place of departure A , is:	7.8°	9°	15.6°	5.2°	1	0	00
4264	61	Given: Waypoint $1.60^{\circ} \mathrm{S} 030^{\circ} \mathrm{W}$ Waypoint 2. $60^{\circ} \mathrm{S} 020^{\circ} \mathrm{W}$ What will be the approximate latitude shown on the display	06011'S	05949'S	06000'S	06006'S	0	0	01
4265	61	What is the time required to travel along the parallel of latitude $60^{\circ} \mathrm{N}$ between meridians $010^{\circ} \mathrm{E}$ and $030^{\circ} \mathrm{W}$ at a groundspeed of 480 kt ?	5 HR 00 MIN	2 HR 30 MIN	1 HR 15 MIN	1 HR 45 MIN	0	1	0
4266	61	(For this question refer to annex 061-12607A) What feature is shown on the chart at position N5351	Brittas Bay aerodrome	Castlebar aerodrome	Connaught aerodrome	Connemara aerodrome	0		0

4267	61	(For this question refer to annex 061-12606A) What feature is shown on the chart at position N5311	Punchestown aerodrome	Connemara aerodrome	KERRY/Farra nfore aerodrome	Clonbullogue aerodrome	1	0	0	0
4268	61	Which of the following statements conceming the loss of alignment by an Inertial Reference System (IRS) in flight is correct?	It is not usable in any mode and must be shut down for the rest of the flight	The navigation mode, including present position and ground speed output s , is inoperative for the remainder of the flight	The IRS has to be coupled to the remaining serviceable system and a realignmen t carried out in flight	The mode selector has to be rotated to ATT then back through ALIG N to NAV in order to obtain an in-flight realignment	0	1	0	0
4269	61	The two standard parallels of a conical Lambert projection are at $\mathrm{N} 10^{\circ} 40^{\prime} \mathrm{N}$ and $\mathrm{N} 41^{\circ} 20^{\prime}$. The cone constant of this chart is approximatively :	0.90	0.66	0.18	0.44	0	0	0	1
4270	61	Given: Distance ' A ' to ' B ' is 90 NM, Fix obtained 60 NM along and 4 NM to the right of course. What heading alteration must be made to reach 'B'?	4° Left	8° Left	12° Left	16° Left	0	0	1	0
4271	61	(For this question refer to annex 061-12612A) Which of the following lists all the aeronautical chart symbols shown at position N5318.1 W00856.5?	VOR: DME: NDB: compulsory reporting point	civil airport: VOR: DME: non-compulso ry reporting point	VOR: DME: NDB: compulsory reporting point	civil aiport: NDB: DME: non-compuls ory reporting point	0	0	0	1
4272	61	(For this question refer to annex 061-12611A) Which of the following lists all the aeronautical chart symbols shown at position N5416.7 W00836.0?	civil aiport: NDB: DME: compulsory reporting point	VOR: DME: NDB: compulsory reporting point	civil aimport: VOR: DME: non-compulso ry reporting point	VOR: DME: NDB: non-compuls ory reporting point	1	0	0	0
4273	61	(For this question refer to annex 061-12610A) Which of the following lists all the aeronautical chart symbols shown at position N5318.0 W00626.9?	military airport: VOR: NDB	VOR: DME: danger area	military airport: VOR: DME	civil airport: VOR: DME	0	0	1	0
4274	61	(For this question refer to annex 061-12609A) Which of the following lists all the aeronautical chart symbols shown at position N5150.4 W00829.7?	VOR: DME: NDB:compul sory reporting poi nt	VOR: DME: NDB: ILS	civil aiport: VOR: DME: compulsory reporting point	civil aiport: VOR: non-compuls ory reporting point	0	0	1	0
4275	61	(For this question refer to annex 061-12608A) What feature is shown on the chart at position N5417	Belmullet aerodrome	Carnmore aerodrome	Clonbullogue aerodrome	$\begin{array}{\|l} \hline \text { EAGLE } \\ \text { ISLAND } \\ \text { LT.H. NDB } \end{array}$	0	0	0	1
4276	61	The main reason for usually mounting the detector unit of a remote indicating compass in the wingtip of an aeroplane is to:	place it where it will not be subjected to electrical or magnetic interference from the aircraft	reduce the amount of deviation caused by aircraft magnetism and electrical circ uits	facilitate easy mainten ance of the unit and increase its exposure to the Earth's magnetic field	place it in a position where there is no electrical wiring to cause deviation errors	0	1-1	0	0
4277	61	Given: Position ' A ' is $\mathrm{N} 00^{\circ} \mathrm{E} 100^{\circ}$,	$\begin{aligned} & \text { N01̊} 40^{\prime} \\ & \text { E101} \end{aligned}$	$\begin{aligned} & \text { S01º } 40^{\prime} \\ & \text { E0970. } \end{aligned}$	$\begin{aligned} & \hline \text { N01̊} 40^{\prime} \\ & \text { E097o } 07^{\prime} \end{aligned}$	$\begin{aligned} & \hline \text { S01} 40^{\prime} \\ & \text { E101 }{ }^{\circ} 40^{\prime} \end{aligned}$	0	1	0	0
4278	61	The main advantage of a remote indicating compass over a direct reading compass is that it:	requires less maintenance	is able to magnify the earth's magnetic field in order to attain greater accuracy	senses, rather than seeks, the magnetic meridian	has less moving parts	0	0	1	0

4279	61	Which of the following statements conceming the aircraft positions indicated on a triple fit Inertial Navigation System (INS)/ Inertial Reference System (IRS) on the CDU is correct?	The positions will be the same because they are an average of three different positions	The positions will only differ if one of the systems has been decoupled because of a detected malfunction	The positions will only differ if an error has been made when inputting the present position at the departure air port	The positions are likely to differ because they are calculated from different sour ces	0	0	0	1
4280	61	Which of the following statements conceming the operation of an Inertial Navigation System (INS)/Inertial Reference System (IRS) is correct?	NAV mode must be selected prior to movement of the aircraft off the gate	NAV mode must be selected on the runway just prior to take-off	NAV mode must be selected prior to the loading of passengers and/or freight	NAV mode must be selected when the alignment procedure is commenced	1	0	0	0
4281	61	Which of the following statements conceming the alignment procedure for Inertial Navigation Systems(INS)/Inertial Reference Systems (IRS) at mid-latitudes is correct?	INS/IRS can only be aligned in NAV mode	INS/IRS can be aligned in either the ALIGN or NAV mode	INS/IRS can only be aligned in the ALIGN mode	INS/IRS can be aligned in either the ALIGN or ATT mode	0	1	0	0
4282	61	The alignment time, at mid-latitudes, for an Inertial Reference System using laser ring gyros is approximately:	5 MIN	10 MIN	20 MIN	2 MIN	0	1	0	0
4283	61	What is the name given to an Inertial Reference System (IRS) which has the gyros and accelerometers as part of the unit's fixture to the aircraft structure?	Solid state	Ring laser	Strapdown	Rigid	0	0	1	0
4284	61	The sensors of an INS measure:	precession	acceleration	velocity	the horizontal component of the earth's rotation	0	1	0	0
4285	61	A pilot accidently turning OFF the INS in flight, and then tums it back ON a few moments later. Following this incident:	the INS is usable in NAV MODE after a position update	it can only be used for attitude reference	no useful information can be obtained from the INS	everything retums to normal and is usable	0	1	0	0
4286	61	The chart that is generally used for navigation in polar areas is based on a:	Direct Mercator projection	Gnomonic projection	Lambert conformal projection	Stereographic al projection	0	0	0	1
4287	61	(For this question use annex 061-9438A) Complete line 2 of the 'FLIGHT NAVIGATION LOG', positions 'C' to 'D'.	$\begin{aligned} & \text { HDG } 193^{\circ}- \\ & \text { ETA } 1239 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 188^{\circ} \\ & \text { ETA } 1229 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 193^{\circ} \\ & \text { ETA } 1249 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & \text { HDG } 183^{\circ} \\ & \text { ETA } 1159 \\ & \text { UTC } \end{aligned}$	1	0	0	0
4288	61	Position A is located on the equat or at longitude $130^{\circ} 00 \mathrm{E}$. Position B is located 100 NM from A on a bearing of $225^{\circ}(\mathrm{T})$. The coordinates of position B are:	$\begin{aligned} & 01^{\circ} 11^{\prime} \mathrm{N} \\ & 128^{\circ} 49^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & 01^{\circ} 11^{\prime} \mathrm{S} \\ & 128^{\circ} 49^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & 01^{\circ} 11^{\prime} \mathrm{N} \\ & 131^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & 01^{\circ} 11 \text { 'S } \\ & 131^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$	0	1	0	0
4289	61	In order to fly from position $\mathrm{A}\left(10^{\circ} 00^{\prime} \mathrm{N}, 030^{\circ} 00^{\prime} \mathrm{W}\right)$ to position B ($30^{\circ} 00^{\prime} \mathrm{N}, 050^{\circ} 00^{\prime} \mathrm{W}$), maintaining a constant true course, it is necessary to fly:	the great-circle route	a straight line plotted on a Lambert chart	a rhumb line track	the constant average drift route	0	-	1	0
4290	61	The rhumb line track between position $\mathrm{A}\left(45^{\circ} 00^{\prime} \mathrm{N}\right.$, $\left.010^{\circ} 00^{\prime} \mathrm{W}\right)$ and position $\mathrm{B}\left(48^{\circ} 30^{\prime} \mathrm{N}, 015^{\circ} 00^{\prime} \mathrm{W}\right)$ is approximately:	345	315	330	300	0	1	0	0
4291	61	The diameter of the Earth is approximately:	40000 km	12700 km	6350 km	18500 km	0	1	0	0
4292	61	(For this question refer to annex 061-12624A) Which aeronautical chart symbol indicates an uncontrolled	3	4	5	2	0	1	0	0

4293	61	The nominal scale of a Lambert conformal conic chart is the:	scale at the equator	scale at the standard parallels	mean scale between pole and equator	mean scale between the parallels of the secant cone	0	1	0	0
4294	61	(For this question refer to annex 061-12625A) Which aeronautical chart symbol indicates the boundary of	2	3	4	5	0	0	0	1
4295	61	A Mercator chart has a scale at the equator $=1: 3704000$. What is the scale at latitude $60^{\circ} \mathrm{S}$?	1:3208 000	1:185200	1:1852000	1:7408000	0	0	1	0
4296	61	The distance measured between two points on a navigation map is 42 mm (millimetres). The scale of the chart is $1: 1600$ 000. The actual distance between these two point is	370.00 NM	67.20 NM	3.69 NM	36.30 NM	0	0	0	1
4297	61	The standard parallels of a Lambert's conical orthomomhic projection are $07^{\circ} 40^{\prime} \mathrm{N}$ and $38^{\circ} 20^{\prime} \mathrm{N}$.	0.42	0.39	0.60	0.92	0	1	0	0
4298	61	On a Lambert conformal conic chart the convergence of the meridians:	is zero throughout the chart	varies as the secant of the latitude	equals earth convergency at the standard parallels	is the same as earth convergency at the parallel of origin	0	-	-	1
4299	61	A straight line drawn on a chart measures 4.63 cm and represents 150 NM.	1:6000 000	1:3000 000	1:5000 000	1:1000 000	1	0	0	0
4300	61	On a Polar Stereographic chart, the initial great circle course from $\mathrm{A} 70^{\circ} \mathrm{N} 060^{\circ} \mathrm{W}$ to $\mathrm{B} 70^{\circ} \mathrm{N} 060^{\circ} \mathrm{E}$ is approximately:	$030^{\circ}(\mathrm{T})$	$330^{\circ}(\mathrm{T})$	150° (T)	$210^{\circ}(\mathrm{T})$	1	0	0	0
4301	61	The maximum difference between geocentric and geodetic latitude occurs at about:	90° North and South	0° North and South (equator)	45° North and South	60° North and South	0	0	1	0
4302	61	(For this question refer to annex 061-12632A) Which aeronautical chart symbol indicates a group of lighted	9	10	11	12	0	0	0	1
4303	61	A course of $120^{\circ}(\mathrm{T})$ is drawn between ' $\mathrm{X}^{\prime}\left(61^{\circ} 30^{\prime} \mathrm{N}\right)$ and Y^{\prime} ($58^{\circ} 30^{\prime} \mathrm{N}$) on a Lambert Conformal conic chart with a scale of $1: 1000000$ at $60^{\circ} \mathrm{N}$. The chart distance between ' X ' and ' Y ' is:	66.7 cm	33.4 cm	38.5 cm	36.0 cm	1	0	-	0
4304	61	(For this question refer to annex 061-12638A) Which aeronautical chart symbol indicates a lightship?	14	16	10	12	0	1	0	0
4305	61	(For this question refer to annex 061-12637A) Which aeronautical chart symbol indicates an aeronautical	15	16	10	14	1	0	0	0
4306	61	(For this question refer to annex 061-12636A) What is the meaning of aeronautical chart symbol No. 16 ?	Shipwreck showing above the surface at low tide	Off-shore lighthouse	Lightship	Off-shore helicopter landing platform	0	0	1	-
4307	61	(For this question refer to annex 061-12635A) What is the meaning of aeronautical chart symbol No. 15 ?	Hazard to aerial navigation	Lighthouse	Aeronautical ground light	Visual reference point	0	0	1	0
4308	61	Given: value for the ellipticity of the Earth is $1 / 297$. Earth's semi-major axis, as measured at the equator, equals 6378.4 km .	6378.4	6367.0	6399.9	6356.9	0	0	0	1
4309	61	(For this question refer to annex 061-12633A) Which aeronautical chart symbol indicates an exceptionally	9	11	13	14	0	0	1	0
4310	61	On a Lambert Conformal Conic chart great circles that are not meridians are:	curves concave to the pole of projection	straight lines within the standard parallels	curves concave to the parallel of origin	straight lines regardless of distance	0	0	1	-
4311	61	(For this question refer to annex 061-12631A) Which aeronautical chart symbol indicates a group of	9	11	12	13	0	1	0	0

4312	61	(For this question refer to annex 061-12630A) Which aeronautical chart symbol indicates a lighted	9	10	11	12	0	1	0	0
4313	61	(For this question refer to annex 061-12629A) Which aeronautical chart symbol indicates an unlighted	12	9	10	11	0	1	0	0
4314	61	(For this question refer to annex 061-12628A) Which aeronautical chart symbol indicates a Way-point?	15	6	7	8	0	0	0	1
4315	61	(For this question refer to annex 061-12627A) Which aeronautical chart symbol indicates a compulsory	8	15	6	7	0	0	0	1
4316	61	(For this question refer to annex 061-12626A) Which aeronautical chart symbol indicates a non-compulsory	15	6	7	8	0	1	0	0
4317	61	(For this question refer to annex 061-12634A) Which aeronautical chart symbol indicates an exceptionally	14	10	12	13	1	0	0	0
4318	61	What is the longitude of a position 6 NM to the east of $58^{\circ} 42^{\prime} \mathrm{N} 094^{\circ} 00^{\prime} \mathrm{W}$?	09353.1 ${ }^{\text {W }}$	094¹2.0'W	093048.5'W	09354.0'W	0	0	1	0
4319	61	Given: $\begin{aligned} & \text { True Heading }=090^{\circ} \\ & \text { TAS }=180 \mathrm{kt} \\ & \text { GS }=180 \mathrm{kt} \end{aligned}$	$360^{\circ} / 15 \mathrm{kt}$	190 $/ 15 \mathrm{kt}$	010 $/ 15 \mathrm{kt}$	$180^{\circ} / 15 \mathrm{kt}$	1	0	0	0
4320	61	Given: $\begin{aligned} & \text { True Heading }=090^{\circ} \\ & \text { TAS }=200 \mathrm{kt} \end{aligned}$	180 kt	200 kt	220 kt	230 kt	0	0	1	0
4321	61	An aeroplane is flying at TAS 180 kt on a track of 090°. The W/V is $045^{\circ} / 50 \mathrm{kt}$. How far can the aeroplane fly out from its base and return in annhoim	85 NM	88 NM	56 NM	176 NM	1	0	0	0
4322	61	The following information is displayed on an Inertial Navigation System: GS 520 kt , True HDG 090°, Drift angle 5° right,	$220^{\circ} / 60 \mathrm{kt}$	$325^{\circ} / 60 \mathrm{kt}$	$320^{\circ} / 60 \mathrm{kt}$	$225^{\circ} / 60 \mathrm{kt}$	0	0	1	0
4323	61	The reported surface wind from the Control Tower is $240^{\circ} / 35$ kt. Runway $30\left(300^{\circ}\right)$.	30 kt	24 kt	27 kt	21 kt	1	0	0	0
4324	61	On a Direct Mercator chart, a rhumb line appears as a:	small circle concave to the nearer pole	spiral curve	curve convex to the nearer pole	straight line	0	0	0	1
4325	61	A great circle track joins position A (59 ${ }^{\circ}$ S $\left.141^{\circ} \mathrm{W}\right)$ and B ($61^{\circ} \mathrm{S} 148^{\circ} \mathrm{W}$). What is the difference between the great circle track at A	It increases by 6°	It decreases by 6°	It increases by 3°	It decreases by 3°	1	0	0	0
4326	61	Given: $\begin{aligned} & \text { True Heading }=180^{\circ} \\ & \text { TAS }=500 \mathrm{kt} \end{aligned}$	435 kt	600 kt	535 kt	450 kt	1	-	0	0
4327	61	A pilot receives the following signals from a VOR DME station: radial $180^{\circ}+/-1^{\circ}$, distance $=200 \mathrm{NM}$.	+/- 2 NM	+/-7 NM	+/- 3.5 NM	+/-1 NM	0	0	1	0
4328	61	An aircraft is maintaining a 5.2% gradient is at 7 NM from the runway, on a flat terrain; its height is approximately:	3640 FT	2210 FT	680 FT	1890 FT	0	1	0	0

4329	61	A useful method of a pilot resolving, during a visual flight, any uncertainty in the aircraft's position is to maintain visual contact with the ground and:	fly the reverse of the heading being flown prior to becoming uncertain until a pinpoint is obtained	fly expanding circles untila pinpoint is obtained	fly reverse headings and associat ed timings until the point of departure is regained	set heading towards a line feature such as a coastline, motoway, river or railway	0	0
4330	61	(For this question use annex 061-12405A) Which of the following beacons is 185 NM from AKRABERG	$\begin{array}{\|l} \hline \text { KIRKWALL } \\ \text { (N5858 W } \\ 00254) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { STORNOWA } \\ & \text { Y (N5815 } \\ & \text { W00617) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SUMBURGH } \\ & \text { (N5955 } \\ & \text { W001 15) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SAXAVORD } \\ & \text { (N6050 } \\ & \text { W00050) } \\ & \hline \end{aligned}$	0	0
4331	61	(For this question use annex 061-12404A) An aircraft on radial 110° at a range of 120 NM from an vavinon vad (manen unnnnenl in nt manitinn.	$\begin{aligned} & \mathrm{N} 6127 \\ & \mathrm{~W} 00443 \end{aligned}$	$\begin{array}{\|l\|} \hline N 6010 \\ \text { E00255 } \end{array}$	$\begin{aligned} & \hline \text { N6109 } \\ & \text { E00255 } \end{aligned}$	$\begin{aligned} & \mathrm{N} 6027 \\ & \mathrm{E} 00307 \end{aligned}$	0	0
4332	61	(For this question use annex 061-12403A) An aircraft on radial 315° at a range of 150 NM from \qquad	$\begin{aligned} & \hline \text { N6320 } \\ & \text { W01205 } \end{aligned}$	$\begin{aligned} & \hline \text { N6020 } \\ & \text { W00405 } \end{aligned}$	$\begin{aligned} & \hline \text { N6345 } \\ & \text { W01125 } \end{aligned}$	$\begin{aligned} & \mathrm{N} 6040 \\ & \mathrm{~W} 00320 \end{aligned}$	1	0
4333	61	An aircraft passes position $\mathrm{A}\left(60^{\circ} 00^{\prime} \mathrm{N} 120^{\circ} 00^{\prime} \mathrm{W}\right)$ on route to position $\mathrm{B}\left(60^{\circ} 00^{\prime} \mathrm{N} 140^{\circ} 30^{\prime} \mathrm{W}\right)$. What is the great circle track on departure from A ?	$279{ }^{\circ}$	288°	261°	270°	1	0
4334	61	Given the following: True track: 192° Magnetic variation: $7^{\circ} \mathrm{E}$ Drift angle: 5° left	180°	190°	194°	204°	0	1
4335	61	An aircraft equipped with an Inertial Navigation System (INS) flies with INS 1 coupled with autopilot 1 . Both inertial navigation systems are navigating from way-point A to B. The inertial systems' Central Display Units (CDU) sho shows: - XTK on INS $1=0$ - XTK on INS $2=8 \mathrm{~L}$ (XTK = cross track)	only inertial navigation system No. 1 is drifting	the auto pilot is unserviceabl e in NAV mode	at least one of the inertial navigat on systems is drifting	only inertial navigation system No. 2 is drifting	0	0
4336	61	On a direct Mercator projection, at latitude 45° North, a certain length represents 70 NM . At latitude 30° North, the same length represents	57 NM	70 NM	81 NM	86 NM	0	0
4337	61	Given: Position A $45^{\circ} \mathrm{N}, ?^{\circ} \mathrm{E}$ Position B $45^{\circ} \mathrm{N}, 45^{\circ} 15^{\prime} \mathrm{E}$ Distance A-B = 280 NM	$38^{\circ} 39^{\prime} \mathrm{E}$	$49^{\circ} 57^{\prime \prime} \mathrm{E}$	$51^{\circ} 51{ }^{\prime} \mathrm{E}$	$4^{\circ} 33^{\prime} \mathrm{E}$	1	0
4338	61	On a polar stereog raphic projection chart showing the South Pole, a straight line joins position $\mathrm{A}\left(70^{\circ} \mathrm{S} 065^{\circ} \mathrm{E}\right)$ to position B ($70^{\circ} \mathrm{S} 025^{\circ} \mathrm{W}$). The true course on departure from position A is	315°	225°	250°	135°	0	1
4339	61	On a direct Mercator projection, the distance measured between two meridians spaced 5° apart at latitude $60^{\circ} \mathrm{N}$ is 8 cm . The scale of this chart at latitude $60^{\circ} \mathrm{N}$ is approximately:	1:4750 000	1:7000 000	1:6000 000	1:3500 000	0	0
4340	61	Two positions plotted on a polar stereog raphic chart, A $\left(80^{\circ} \mathrm{N} 000^{\circ}\right)$ and $\mathrm{B}\left(70^{\circ} \mathrm{N} 102^{\circ} \mathrm{W}\right.$) are joined by a straight line whose highest latitude is reached at $035^{\circ} \mathrm{W}$. At point B, the true course is:	023°	247°	305°	203°	0	-
4341	61	If an aeroplane was to circle around the Earth following parallel $60^{\circ} \mathrm{N}$ at a ground speed of 480 kt . In order to circle around the Earth along the equator in the same amount of time, it should fly at a ground speed of:	240 kt	550 kt	480 kt	960 kt	0	0

4342	61	\|Given: Magnetic heading 311° Drift angle 10° left Relative bearing of NDB 270°	208 ${ }^{\circ}$	211°	180°	1221°	0	0	
4343	61	Given: True heading $=310^{\circ}$ $\begin{aligned} & \text { TAS }=200 \mathrm{kt} \\ & \text { GS }=176 \mathrm{kt} \end{aligned}$	090 / 33 kt	$180^{\circ} / 33 \mathrm{kt}$	$270^{\circ} / 33 \mathrm{kt}$	$360^{\circ} / 33 \mathrm{kt}$	0	¢	0
4344	61	Given the following: Magnetic heading: 060° Magnetic variation: $8^{\circ} \mathrm{W}$	048 ${ }^{\circ}$	072°	056°	064°	0	01	0
4345	61	An aircraft is following a true track of 048° at a constant TAS of 210 kt . The wind velocity is $350^{\circ} / 30 \mathrm{kt}$.	$\begin{aligned} & 192 \mathrm{kt}, 7^{\circ} \\ & \text { right } \end{aligned}$	$\begin{aligned} & 200 \mathrm{kt}, 3.5^{\circ} \\ & \text { right } \end{aligned}$	$192 \mathrm{kt}, 7^{\circ} \mathrm{left}$	$225 \mathrm{kt}, 7^{\circ} \mathrm{left}$	1	0	0
4346	61	Given: FL 350, Mach 0.80, OAT $-55^{\circ} \mathrm{C}$.	$\begin{aligned} & 461 \mathrm{kt}, \text { LSS } \\ & 296 \mathrm{kt} \end{aligned}$	$\begin{aligned} & 461 \mathrm{kt}, \text { LSS } \\ & 576 \mathrm{kt} \end{aligned}$	$\begin{aligned} & 237 \mathrm{kt}, \mathrm{LSS} \\ & 296 \mathrm{kt} \end{aligned}$	$\begin{aligned} & 490 \mathrm{kt}, \text { LSS } \\ & 461 \mathrm{kt} \end{aligned}$	-	1-1	-
4347	61	For a given track the: Wind component $=+45 \mathrm{kt}$ Drift angle $=15^{\circ}$ left	-35 kt	-65 kt	-55 kt	-45 kt	0	10	0
4348	61	Given: $\begin{aligned} & \text { Magnetic heading }=255^{\circ} \\ & \text { VAR }=40^{\circ} \mathrm{W} \\ & \text { GS }=375 \mathrm{kt} \end{aligned}$	16° right	7° left	7° right	9° left	0	1-1	0
4349	61	The great circle distance between position $\mathrm{A}\left(59^{\circ} 34.1^{\mathrm{N}} \mathrm{N}\right.$ $\left.008^{\circ} 08.4^{\prime} \mathrm{E}\right)$ and $\mathrm{B}\left(30^{\circ} 25.9^{\prime} \mathrm{N} 171^{\circ} 51.6^{\prime} \mathrm{W}\right)$ is:	2700 NM	10800 NM	5400 NM	10800 km	0	0	0
4350	61	On a Mercator chart, the scale:	is constant throughout the chart	varies as $1 / 2$ cosine of the co-latitude	varies as 1/cosine of latitude (1/cosine= secant)	varies as the sine of the latitude	0	-	0
4351	61	Given: Distance A to $B=120 N M$, After 30 NM aircraft is 3 NM to the left of course.	8° night	6° night	4° night	8° left	1	0	0
4352	61	Given: Distance 'A' to 'B' 1973 NM Groundspeed 'out' 430 kt Groundspeed 'back' 385 kt	130 MIN	145 MIN	162 MIN	181 MIN	1	0	0
4353	61	An aircraft was over ' Q ' at 1320 hours flying direct to ' R '. Given:	1510 NM	2290 NM	2370 NM	1310 NM	0	1	

4364	61	The main reason for mounting the detector unit of a remote reading compass in the wingtip of an aeroplane is:	to ensure that the unit is in the most accessi ble position on the aircraft for ease of maintenance	by having detector units on both wingt ips, to cancel out the deviation effects caused by the aircraft strucure	to minimise the amount of deviation caused by aircraft magnetism and electrical circ uits	to maximise the units exposure to the earth's magnetic field	0	0	1
4365	61	Route 'A' ($44^{\circ} \mathrm{N} 026^{\circ} \mathrm{E}$) to 'B' ($46^{\circ} \mathrm{N} 024^{\circ} \mathrm{E}$) forms an angle of 35° with longitude $026^{\circ} \mathrm{E}$. Average magnetic variation between ' A^{\prime} and ' B ' is $3^{\circ} \mathrm{E}$. What is the average magnetic course from ' A ' to ' B '?	038 ${ }^{\circ}$	322°	328°	032 ${ }^{\circ}$	0	1	0
4366	61	An aircraft was over 'A' at 1435 hours flying direct to ' B '.	2844 NM	2141 NM	1611 NM	1759 NM	0	1	0
4367	61	An aircraft is planned to fly from position 'A' to position ' B ', distance 480 NM at an average GS of 240 kt . It departs 'A' at 1000 UTC. After flying 150 NM along track from ' A ', the aircraft is 2 MIN behind planned time. Usina the actual GS experienced. what is the revised ETA at	1157	1206	1203	1153	-	1-1	0
4368	61	(For this question use annex 061-12402A) What are the initial true course and distance between nnnitinnn MIK Onn MIntonn and MIEEn	$\begin{array}{\|rc} \hline 032^{\circ} & - \\ 470 \mathrm{NM} \end{array}$	$\begin{array}{rc} \hline 036^{\circ} & - \\ 638 & \mathrm{NM} \end{array}$	$\begin{array}{rr} \hline 029^{\circ} & - \\ 570 \mathrm{NM} \end{array}$	$\begin{array}{rc} \hline 042^{\circ}- \\ 635 \mathrm{NM} \end{array}$	0	1-1	0
4369	61	Given: Distance ' A ' to ' B ' is 100 NM, Fix obtained 40 NM along and 6 NM to the left of course. What heading alteration must be made to reach 'B'?	18° Right	15° Right	9° Right	6° Right	0	1	0
4370	61	Given: Distance ' A ' to ' B ' is 325 NM , Planned GS 315 kt , ATD 1130 UTC,	375 kt	395 kt	335 kt	355 kt	-	-	0
4371	61	Given: Distance ' A ' to ' B ' is 475 NM, Planned GS 315 kt , ATD 1000 UTC,	340 kt	360 kt .	300 kt	320 kt .	1	0	0
4372	61	Given: Magnetic track $=210^{\circ}$, Magnetic HDG $=215^{\circ}$, $\operatorname{VAR}=15^{\circ} \mathrm{E}$	235\% $/ 50 \mathrm{kt}$	$300^{\circ} / 30 \mathrm{kt}$	265\%/50 kt	195\% 50 kt	0	0	10
4373	61	Given: $\begin{aligned} & \text { Magnetic track }=075^{\circ}, \\ & \\ & \mathrm{HDG}=066^{\circ}(\mathrm{M}) \\ & \operatorname{VAR}=11^{\circ} \mathrm{E} \end{aligned}$	180% \% kt	$340 \% 45 \mathrm{kt}$	320% k kt	210\%/15 kt	0		

4387	61	(For this question use annex 061-12559A) What is the radialand DME distance from CON VOR/DME (N5354.8 W00849.1) to position N5340 W00820?	$\begin{array}{lll} 311^{\circ}-22 \\ N M & & \\ \hline \end{array}$	$\begin{array}{lll} 240^{\circ}-24 \\ N M & & \end{array}$	$\begin{aligned} & 140^{\circ}-23 \\ & N M \end{aligned}$	$\begin{array}{ll} 119^{\circ}-42 \\ N M & \end{array}$	0	0	1	0
4388	61	(For this question use annex 061-12558A) What is the radial and DME distance from CON VOR/DME (N5354.8 W00849.1) to position N5400 W00800?	$\begin{array}{ll} 320^{\circ}-8 \\ N M & \end{array}$	$\begin{array}{lll} 094^{\circ}-64 \\ N M & & \end{array}$	$\begin{array}{lll} 260^{\circ}-30 \\ N M & & \end{array}$	$\begin{array}{lll} \hline 088^{\circ}-29 \\ N M & \end{array}$	0	0	0	1
4389	61	(For this question use annex 061-12557A) What is the radial and DME distance from CON VOR/DME (N5354.8 W00849.1) to position N5430 W00900?	$\begin{aligned} & 214^{\circ}-26 \\ & \text { NM } \end{aligned}$	O49 NM	$\begin{array}{lll} 169^{\circ}-35 \\ N M & & \end{array}$	$\begin{array}{ll} 358^{\circ}-36 \\ N M & \end{array}$	0	0	0	1
4390	61	An aircraft at latitude 10° North flies south at a groundspeed of $445 \mathrm{~km} / \mathrm{HR}$.	0350'S	0200'S	12¹5'S	$22^{\circ} 00^{\prime} \mathrm{S}$	0	1	0	0
4391	61	(For this question use annex 061-12555A) What is the radialand DME distance from SHA VOR/DME (N5243.3 W00853.1) to position N5220 W00810?	$\begin{aligned} & 132^{\circ}-36 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 212^{\circ}-26 \\ & N M \end{aligned}$	$\begin{array}{ll} 139^{\circ}-35 \\ \text { NM } & \end{array}$	$\begin{array}{ll} 129^{\circ}-46 \\ N M & \end{array}$	0	0	1	0
4392	61	(For this question use annex 061-12563A) What is the radial and DME distance from BEL VOR/DME (N5439.7 W00613.8) to position N5500 W00700?	$\begin{aligned} & 296^{\circ}-65 \\ & N M \end{aligned}$	$\begin{aligned} & 126^{\circ}-33 \\ & \mathrm{NM} \end{aligned}$	$\begin{aligned} & 222^{\circ}-48 \\ & \text { NM } \end{aligned}$	$\begin{array}{lll} \hline 315^{\circ}-34 \\ \text { NM } & & \end{array}$	0	0	0	1
4393	61	(For this question use annex 061-12553A) What is the radialand DME distance from SHA VOR/DME (N5243.3 W00853.1) to position N5300 W00940?	$\begin{aligned} & 309^{\circ}-33 \\ & N M \end{aligned}$	$\begin{array}{lll} 057^{\circ}-27 \\ N M & & \end{array}$	$\begin{aligned} & 293^{\circ}-33 \\ & \text { NM } \end{aligned}$	$\begin{array}{lll} 324^{\circ}-17 \\ N M & & \end{array}$	1	-	0	0
4394	61	(For this question use annex 061-12552A) What is the radialand DME distance from CRK VOR/DME (N5150.4 W00829.7) to position N5140 W00730?	$\begin{array}{ll} 293^{\circ}-39 \\ N M & \end{array}$	$\begin{aligned} & 106^{\circ}-38 \\ & N M \end{aligned}$	$\begin{array}{ll} 113^{\circ}-38 \\ \text { NM } & \\ \hline \end{array}$	$\begin{array}{ll} 104^{\circ}-76 \\ N M & \end{array}$	0	-	1	0
4395	61	(For this question use annex 061-12551A) What is the radial and DME distance from CRK VOR/DME (N5 150.4 W00829.7) to position N5230 W00750?	$\begin{array}{ll} 023^{\circ}-48 \\ \text { NM } & \end{array}$	$\begin{array}{lll} 017^{\circ}-43 \\ \text { NM } & \end{array}$	$\begin{array}{lll} 039^{\circ}-48 \\ N M & \end{array}$	$\begin{aligned} & 024^{\circ}-43 \\ & \text { NM } \end{aligned}$	0	0	1	-
4396	61	(For this question use annex 061-12550A) What is the radial and DME distance from CRK VOR/DME (N5 150.4 W00829.7) to position N5210 W00920?	$\begin{array}{ll} 350^{\circ}-22 \\ N M & \end{array}$	$\begin{aligned} & 295^{\circ}-38 \\ & N M \end{aligned}$	$\begin{aligned} & 170^{\circ}-22 \\ & \text { NM } \end{aligned}$	$\begin{array}{ll} 311^{\circ}-38 \\ N M & \end{array}$	0	0	0	1
4397	61	(For this question use annex 061-12549A) What is the radial and DME distance from CRK VOR/DME (N5150.4 W00829.7) to position N5220 W00810?	$\begin{aligned} & 014^{\circ}-33 \\ & N M \end{aligned}$	$\begin{array}{ll} 220^{\circ}-40 \\ N M & \end{array}$	$\begin{aligned} & 030^{\circ}-33 \\ & \mathrm{NM} \end{aligned}$	$\begin{aligned} & 048^{\circ}-40 \\ & N M \end{aligned}$	0	-	1	0
4398	61	(For this question use annex 061-9437A) Complete line 1 of the 'FLIGHT NAVIGATIONLOG'; positions 'A' to 'B'.	$\begin{aligned} & 268^{\circ}-1114 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & 282^{\circ}-1128 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & 282^{\circ}-1114 \\ & \text { UTC } \end{aligned}$	$\begin{aligned} & 268^{\circ}-1128 \\ & \text { UTC } \end{aligned}$	1	0	0	0
4399	61	(For this question use annex 061-12556A) What is the radial and DME distance from SHA VOR/DME (N5243.3 W00853.1)	$\begin{array}{lll} 354^{\circ}-34 \\ N M \end{array}$	$\begin{array}{ll} 198^{\circ}-37 \\ N M & \end{array}$	$\begin{array}{lll} 346^{\circ}-34 \\ N M & \end{array}$	$\begin{array}{lll} 214^{\circ}-37 \\ N M & & \end{array}$	0	0	0	1
4400	61	On a Direct Mercator chart at latitude of $45^{\circ} \mathrm{N}$, a certain length represents a distance of 90 NM on the earth. The same length on the chart will represent on the earth, at latitude $30^{\circ} \mathrm{N}$, a distance of :	110 NM	73.5 NM	78 NM	45 NM	1	0	0	0
4401	61	The 'departure' between positions $60^{\circ} \mathrm{N} 160^{\circ} \mathrm{E}$ and $60^{\circ} \mathrm{N}$ ' x ' is 900 NM .	$170^{\circ} \mathrm{W}$	$140^{\circ} \mathrm{W}$	$145^{\circ} \mathrm{E}$	$175^{\circ} \mathrm{E}$	1	0	0	0
4402	61	An aircraft at position $60^{\circ} \mathrm{N} 005^{\circ} \mathrm{W}$ tracks $090^{\circ}(\mathrm{T})$ for 315 km . On completion of the flight the longitude will be:	002 ${ }^{\circ} 10^{\prime} \mathrm{W}$	000o15'E	00040'E	005¹5'E	0	0	1	0
4403	61	A flight is to be made from ' A ' $49^{\circ} \mathrm{S} 180^{\circ} \mathrm{E} / \mathrm{W}$ to ' B ' $58^{\circ} \mathrm{S}$, $180^{\circ} \mathrm{E} / \mathrm{W}$. The distance in kilometres from ' A ' to ' B ' is approximately:	540	804	1000	1222	0	0	1	0
4404	61	At what approximate date is the earth furthest from the sun (aphelion)?	End of December	Beginning of January	End of September	Beginning of July	0	0	0	1
4405	61	At what approximate date is the earth closest to the sun (perihelion)?	Beginning of January	End of March	Beginning of July	End of June		0	0	0

4406	61	Assuming mid-latitudes $\left(40^{\circ}\right.$ to $\left.50^{\circ} \mathrm{N} / \mathrm{S}\right)$. At which time of year is the relationship between the length of day and night, as well as the rate of change of declination of the sun, changing at the greatest rate?	Spring equinox and autumn equinox	Summer solstice and spring equinox	summer solstice and winter solstice	Winter solstice and autumn equinox	1	0
4407	61	Two points A and B are 1000 NM apart. TAS $=490 \mathrm{kt}$. On the flight between A and B the equivalent headwind is -20 kt. On the retum leg between B and A, the equivalent headwind is +40 kt . What distance from A. alona the route A to B. is the the Point	470 NM	455 NM	500 NM	530 NM	0	0
4408	61	In which two months of the year is the difference between the transit of the Apparent Sun and Mean Sun across the Greenwich Meridian the greatest?	June and December	April and August	February and November	March and September	0	0
4409	61	(For this question use annex 061-12562A) What is the radialand DME distance from BEL VOR/DME (N5439.7 W00613.8) to position N5440 W00730?	$\begin{array}{ll} 098^{\circ}-45 \\ N M & \end{array}$	$\begin{aligned} & 278^{\circ}-44 \\ & \text { NM } \end{aligned}$	$\begin{array}{lll} 090^{\circ}-46 \\ N M & \end{array}$	$\begin{array}{lll} \hline 278^{\circ}-10 \\ N M & \end{array}$	0	1
4410	61	On a Direct Mercator chart at latitude $15^{\circ} \mathrm{S}$, a certain length represents a distance of 120 NM on the earth. The same length on the chart will represent on the earth, at latitude $10^{\circ} \mathrm{N}$, a distance of :	124.2 NM	118.2 NM	122.3 NM	117.7 NM	0	0
4411	61	(For this question use annex 061-12567A) What is the average track (${ }^{\circ} \mathrm{M}$) and distance between WTD NDB (N521 1.3 W00705.0) and BAL VOR (N5318.0	$\begin{array}{ll} \hline 206^{\circ}-71 \\ N M & \end{array}$	$\begin{aligned} & 198^{\circ}-72 \\ & \text { NM } \end{aligned}$	$\begin{array}{ll} 026^{\circ}-71 \\ \text { NM } & \end{array}$	$\begin{array}{lll} 018^{\circ}-153 \\ \text { NM } & \end{array}$	0	0
4412	61	(For this question use annex 061-12566A) What is the average track (${ }^{\circ} \mathrm{M}$) and distance between CRN NDB (N5318.1 W00856.5) and WTD NDB (N5211.3	$\begin{array}{ll} 135^{\circ}-96 \\ \text { NM } & \\ \hline \end{array}$	$\begin{aligned} & 322^{\circ}-95 \\ & N M \end{aligned}$	$\begin{array}{lll} \hline 142^{\circ}-95 \\ N M & & \end{array}$	$\begin{array}{lll} 315^{\circ}-94 \\ N M & & \end{array}$	0	0
4413	61	(For this question use annex 061-12565A) What is the average track (${ }^{\circ} \mathrm{M}$) and distance between CRK VOR (N5150.4 W00829.7) and CRN NDB (N5318.1	$\begin{aligned} & 177^{\circ}-92 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 357^{\circ}-89 \\ & N M \end{aligned}$	$\begin{array}{ll} 169^{\circ}-91 \\ N M & \end{array}$	$\begin{array}{ll} 349^{\circ}-90 \\ N M & \end{array}$	0	1
4414	61	(For this question use annex 061-12564A) What is the average track (${ }^{\circ} \mathrm{M}$) and distance between WTD NDB (N521 1.3 W00705.0) and KER NDB (N52 10.9	$\begin{aligned} & 090^{\circ}-91 \\ & \mathrm{NM} \end{aligned}$	$\begin{aligned} & 270^{\circ}-89 \\ & \text { NM } \end{aligned}$	$\begin{aligned} & 098^{\circ}-90 \\ & N M \end{aligned}$	$\begin{aligned} & 278^{\circ}-90 \\ & N M \end{aligned}$	0	0
4415	61	Given: Direct Mercator chart with a scale of 1:200000 at equator; Chart length from ' A ' to ' B ', in the vicinity of the equator, 11 cm.	12 NM	21 NM	22 NM	14 NM	1	0
4416	61	What is the highest latitude listed below at which the sun will reach an altitude of 90° above the horizon at some time during the year?	0°	23°	45°	66°	0	1
4417	61	What is the meaning of the term "standard time" ?	It is the time zone system applicable only in the USA	It is an expression for local mean time	It is another term for UTC	It is the time set by the legal authorities for a country or part of a country	0	0
4418	61	Given: The coordinates of the heliport at Issy les Moulineaux are: $N 48^{\circ} 50^{\prime} E 002^{\circ} 16.5^{\prime}$	S4110' W177ํ.43.5'	$\begin{aligned} & \mathrm{S} 41^{\circ} 10^{\prime} \\ & \mathrm{E} 177^{\circ} 43.5^{\prime} \end{aligned}$	$\begin{aligned} & \text { S48ํ050' } \\ & \text { W177̊ㄴ3. } 5^{\prime} \end{aligned}$		0	0
4419	61	How many NM would an aircraft travel in 1 MIN 45 SEC if GS is 135 kt ?	2.36	3.25	39.0	3.94	0	0
4420	61	Given: Course $040^{\circ}(\mathrm{T})$, TAS is 120 kt , Wind speed 30 kt .	120°	130°	145°	115°		

4421	61	Given: IAS 120 kt, FL 80,	120 kt	132 kt	141 kt	102 kt	0	0	
4422	61	Given: Compass Heading 090°, Deviation $2^{\circ} \mathrm{W}$, Variation $12^{\circ} \mathrm{E}$, TAS 160 kt. Whilst maintaining a radial 070° from a VOR station,	$340 \% / 25 \mathrm{kt}$	$340 \% 98 \mathrm{kt}$	155\%/25 kt	160% \% kt	0	0	
4423	61	Given: Pressure Altitude 29000 FT, のnt rion	27500 FT	31000 FT	33500 FT	26000 FT	1	0	
4424	61	Given: M 0.80, OAT $-50^{\circ} \mathrm{C}$, FL 330, GS 490 kt,	025\%/45 kt	020\%/95 kt	025\%/47 kt	200\%/95 kt	0	1	
4425	61	Given: TAS 487kt, FL 330,	0.76	0.78	0.81	0.84	0	0	
4426	61	What is the ISA temperature value at FL 330?	$-56^{\circ} \mathrm{C}$	$-66^{\circ} \mathrm{C}$	$-81^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$	0	0	
4427	61	When an aircraft on a westerly heading on the northern hemisphere accelerates, the effect of the acceleration error causes the magnetic compass to:	lag behind the tuming rate of the aircraft	indicate a tum towards the south	to turn faster than the actual tuming rate of the aircraft	indicate a tum towards the north	0	0	
4428	61	When is the magnetic compass most effective?	In the region of the magnetic North Pole.	On the geographic equator	About midway betw een the magnetic poles	In the region of the magnetic South Pole.	0	-	0
4429	61	Given: $\text { TAS = } 472 \text { kt, }$ True HDG $=005^{\circ}$,	$7^{\circ} \mathrm{R}-487 \mathrm{kt}$	$6^{\circ} \mathrm{L}-487 \mathrm{kt}$	$7{ }^{\circ} \mathrm{R}-491 \mathrm{kt}$	7º - 491 kt	0	1	0
4430	61	What is the local meantime, position $65^{\circ} 25^{\prime} \mathrm{N} 123^{\circ} 45$ 'W at 2200 UTC?	2200	0615	0815	1345	0	0	
4431	61	An aircraft flies the following rhumb line tracks and distances from position $04^{\circ} 00^{\prime} \mathrm{N} 030^{\circ} 00^{\prime} \mathrm{W}$: 600 NM South, then 600 NM East, then 600 NM North,	$\begin{array}{l\|} 04^{\circ} 00^{\prime} \mathrm{N} \\ 030^{\circ} 00^{\prime} \mathrm{W} \end{array}$	$\begin{aligned} & 03^{\circ} 58^{\prime} \mathrm{N} \\ & 030^{\circ} 02^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & 04^{\circ} 00^{\prime} \mathrm{N} \\ & 029^{\circ} 58^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & 04^{\circ} 00^{\prime} \mathrm{N} \\ & 030^{\circ} 02^{\prime} \mathrm{W} \end{aligned}$	-	-	0
4432	61	Isogrives are lines that connect positions that have:	the same variation	O° magnetic dip	the same grivation	the same horizontal magnetic field strength	-	0	0
4433	61	An aircraft flies a great circle track from $56^{\circ} \mathrm{N} 070^{\circ} \mathrm{W}$ to 62° N $110^{\circ} \mathrm{E}$.	1788 NM	2040 NM	3720 NM	5420 NM	0	0	0
4434	61	An aircraft travels 2.4 statute miles in 47 seconds. What is its groundspeed?	209 kt	131 kt	160 kt	183 kt	0	0	0
4435	61	How long will it take to fly 5 NM at a groundspeed of 269 Kt ?	$\begin{aligned} & \hline 0 \mathrm{MIN} 34 \\ & \text { SEC } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{MIN} 07 \\ & \text { SEC } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \text { MIN } 55 \\ & \text { SEC } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \text { MIN } 30 \\ & \text { SEC } \\ & \hline \end{aligned}$	0	1	

4436	61	$730 \mathrm{FT} / \mathrm{MIN}$ equals:	$5.2 \mathrm{~m} / \mathrm{sec}$	$1.6 \mathrm{~m} / \mathrm{sec}$	$2.2 \mathrm{~m} / \mathrm{sec}$	$3.7 \mathrm{~m} / \mathrm{sec}$	0	0	0	1
4437	61	265 US-GAL equals? (Specific gravity 0.80)	862 kg	895 kg	940 kg	803 kg	0	0	0	1
4438	61	Given: $\begin{aligned} & \text { TAS = } 140 \mathrm{kt}, \\ & \text { True HDG }=302^{\circ}, \end{aligned}$	$9^{\circ} \mathrm{R}-143 \mathrm{kt}$	$9^{\circ} \mathrm{L}-146 \mathrm{kt}$	$18^{\circ} \mathrm{R}-146 \mathrm{kt}$	$16^{\circ} \mathrm{L}-156 \mathrm{kt}$	0	0	0	1
4439	61	Given: $\text { TAS = } 290 \mathrm{kt} \text {, }$ True HDG $=171^{\circ}$,	$4^{\circ} \mathrm{L}-314 \mathrm{kt}$	$4^{\circ} \mathrm{R}-310 \mathrm{kt}$	$4^{\circ} \mathrm{R}-314 \mathrm{kt}$	$4^{\circ} \mathrm{L}-310 \mathrm{kt}$	1	0	0	0
4440	61	Given: GS $=135 \mathrm{kt}$. Distance from A to $B=433 N M$.	3 HR 20 MIN	3 HR 12 MIN	3 HR 25 MIN	3 HR 19 MIN	0	1	0	0
4441	61	The angular difference, on a Lambert conformal conic chart, between the arrival and departure track is equal to:	difference in longitude	map convergence	earth convergence	conversion angle	0	1	0	0
4442	61	Given: True course A to $B=250^{\circ}$ Distance A to $\mathrm{B}=315 \mathrm{NM}$ $\text { TAS = } 450 \mathrm{kt} .$	0810 UTC	0716 UTC	0736 UTC	0730 UTC	0	0	1	0
4443	61	An Agonic line is a line that connects:	positions that have 0° variation	positions that have the same variation	points of equal magnetic dip	points of equal magnetic horizontal field strength	1-1	0	0	0
4444	61	Parallels of latitude, except the equator, are:	Rhumb lines	Great circles	both Rhumb lines and Great circles	are neither Rhumb lines nor Great circles	1	0	0	0
4445	61	Given: GS = 510 kt . Distance A to $B=43 \mathrm{NM}$	6	7	5	4	0	0	1	0
4446	61	Given: true track 070° variation $30^{\circ} \mathrm{W}$ deviation $+1^{\circ}$	089 ${ }^{\circ}$	091°	100°	101°	1-1	-	0	0
4447	61	The angle between True North and Magnetic North is called :	drift	variation	deviation	compass error	0	1	0	0
4448	61	Given: GS = 122 kt . Distance from A to $B=985 \mathrm{NM}$.	8 HR 10 MIN	8 HR 04 MIN	7 HR 48 MIN	7 HR 49 MIN	0	1	0	0
4449	61	What is the value of the magnetic dip at the magnetic south pole?	0°	90°	45°	60°	0	1	0	0
4450	61	Given: GS = 236 kt . Distance from A to $B=354 \mathrm{NM}$	1 HR 40 MIN	1 HR 30 MIN	1 HR 09 MIN	1 HR 10 MIN	0	1	0	0
4451	61	Given: GS = 435 kt . Distance from A to $B=1920 \mathrm{NM}$.	4 HR 10 MIN	4 HR 25 MIN	3 HR 25 MIN	3 HR 26 MIN	0	1	0	0
4452	61	Given: GS = 345 kt . Distance from A to $B=3560$ NM.	$\begin{aligned} & 11 \text { HR } 00 \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & 11 \text { HR } 02 \\ & \text { MIN } \end{aligned}$	10 HR 19 MIN	$\begin{aligned} & 10 \text { HR } 05 \\ & \text { MIN } \end{aligned}$	0	0	1	0
4453	61	Given: GS = 480 kt . Distance from A to $B=5360 \mathrm{NM}$.	$11 \text { HR } 07$ MIN	$11 \text { HR } 15$ MIN	$11 \text { HR } 10$ MIN	$\begin{aligned} & 11 \text { HR } 06 \\ & \text { MIN } \end{aligned}$	0	0	1	0
4454	61	Given: GS = 95 kt . Distance from A to $B=480 \mathrm{NM}$.	5 HR 03 MIN	4 HR 59 MIN	5 HR 00 MIN	5 HR 08 MIN	1	0	0	0
4455	61	Given: GS = 105 kt . Distance from A to $B=103 \mathrm{NM}$.	00 HR 58 MIN	01 HR 01 MIN	00 HR 59 MIN	$\begin{aligned} & 00 \text { HR } 57 \\ & \text { MIN } \end{aligned}$	0	0	1	0

4456	61	Given: $\text { TAS = } 470 \mathrm{kt},$ True HDG = 317°	$3^{\circ} \mathrm{R}-470 \mathrm{kt}$	50 $\mathrm{L}-475 \mathrm{kt}$	$5^{\circ} \mathrm{R}-475 \mathrm{kt}$	50 ${ }^{\circ}-470 \mathrm{kt}$	0	0	
4457	61	At a specific location, the value of magnetic variation:	depends on the type of compass installed	depends on the magnetic heading	depends on the true heading	varies slowly over time	0	0	
4458	61	Given: $\text { TAS = } 270 \mathrm{kt},$ True HDG = 270°,	6L-256kt	6R-251kt	8R-259kt	6R-259kt	0	0	
4459	61	Given: FL120, OAT is ISA standard, CAS is 200 kt , Track is $222^{\circ}(\mathrm{M})$,	$\begin{aligned} & 065^{\circ}(\mathrm{T}) / 70 \\ & \mathrm{kt.} \end{aligned}$	$\begin{aligned} & 050^{\circ}(\mathrm{T}) / 70 \\ & \mathrm{kt.} . \end{aligned}$	$040^{\circ}(\mathrm{T}) / 105$ $\mathrm{kt} .$	$\begin{aligned} & 055^{\circ}(\mathrm{T}) / 105 \\ & \mathrm{kt} . \end{aligned}$	0	1	0
4460	61	At latitude $60^{\circ} \mathrm{N}$ the scale of a Mercator projection is $1: 5$ 000 000. The length on the chart between 'C' $\mathrm{N} 60^{\circ} \mathrm{E} 008^{\circ}$ and 'D' $\mathrm{N} 60^{\circ} \mathrm{W} 008^{\circ}$ is:	16.2 cm	35.6 cm	19.2 cm	17.8 cm	0	0	
4461	61	Given : A is $\mathrm{N} 55^{\circ} 000^{\circ}$ B is $\mathrm{N} 54^{\circ} \mathrm{E} 010^{\circ}$ The average true course of the great circle is 100°.	096 ${ }^{\circ}$	104°	107°	100°	0	0	
4462	61	Given: Distance A to B is 360 NM. Wind component A-B is -15 kt , Wind component $\mathrm{B}-\mathrm{A}$ is +15 kt ,	180 NM	170 NM	165 NM	195 NM	0	0	0
4463	61	Given: Half way between two reporting points the navigation log gives the following information: TAS 360 kt, W/V 330 $/ 80 \mathrm{kt}$, Compass heading 237°,	373 kt	360 kt	403 kt	354 kt	-	-	0
4464	61	(For this question use appendix) Given: TAS is 120 kt . ATA 'X' 1232 UTC,	1302 UTC	1257 UTC	1300 UTC	1303 UTC	1	0	00
4465	61	A negative (westerly) magnetic variation signifies that:	Compass North is East of Magnetic North	Compass North is West of Magnetic North	True North is East of Magnetic North	True North is West of Magnetic North	0	0	1-10
4466	61	In northern hemisphere, during an acceleration in an easterly direction, the magnetic compass will indicate:	a heading of East	a decrease in heading	an increase in heading	an apparent tum to the South	0	1	0
4467	61	Deviation applied to magnetic heading gives:	magnetic track	compass heading	true heading	magnetic course	0	1	0
4468	61	The purpose of compass check swing is to:	cancel out the horizontal component of the earth's magnetic field	cancel out the effects of the magnetic fields found on board the aeroplane	measure the angle between Magnetic North and Compass North	cancel out the vertical component of the earth's magnetic field		0	

4469	61	At what approximate latitude is the length of one minute of arc along a meridian equal to one NM (1852 m) correct?	30°	45°	0°	190°	0	1	0	0
4470	61	Isogonals are lines of equal :	wind velocity.	magnetic variation.	compass deviation	pressure.	0	1	0	0
4471	61	Given: GS = 120 kt . Distance from A to $B=84 \mathrm{NM}$.	$00 \text { HR } 43$ MIN	00 HR 44 MIN	$\begin{aligned} & \hline 00 \text { HR } 45 \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & 00 \text { HR } 42 \\ & \text { MIN } \end{aligned}$	0	0	0	1
4472	61	The distance between positions A and B is 180 NM . An aircraft departs position A and after having travelled 60 NM, its position is pinpointed 4 NM left of the intended track. Assuming no change in wind velocity, what alteration of heading must be made in order to arrive at position B ?	8° Right	2° Left	4° Right	6° Right	0	0	0	1
4473	61	An aircraft at FL290 is required to commence descent when 50 NM from a VOR and to cross that VOR at FL80. Mean GS during descent is 271 kt . What is the minimum rate of descent required?	$1800 \mathrm{FT} / \mathrm{MIN}$	$1900 \mathrm{FT} / \mathrm{MIN}$	$2000 \mathrm{FT} / \mathrm{MIN}$	$1700 \mathrm{FT} / \mathrm{MIN}$	0	1	0	-
4474	61	Given: Magnetic track $=315^{\circ}$, $H D G=301^{\circ}(\mathrm{M})$, $V A R=5^{\circ} \mathrm{W}$,	190 \% /63 kt	$355 \% 15 \mathrm{kt}$	195\%61 kt	$195 \% 63 \mathrm{kt}$	1	0	0	-
4475	61	Assuming zero wind, what distance will be covered by an aircraft descending 15000 FT with a TAS of 320 kt and maintaining a rate of descent of $3000 \mathrm{FT} / \mathrm{MIN}$?	16.0 NM	26.7 NM	19.2 NM	38.4 NM	0	1	0	0
4476	61	A Lambert conformal conic chart has a constant of the cone of 0.80 . A straight line course drawn on this chart from $\mathrm{A}\left(53^{\circ} \mathrm{N}\right.$ $004^{\circ} \mathrm{W}$) to B is 080° at A; course at B is $092^{\circ}(T)$. What ic the Innoitudo of R ?	$011^{\circ} \mathrm{E}$	00933'E	008E	0190E	1	0	-	-
4477	61	Given: Runway direction $305^{\circ}(\mathrm{M})$, 	21 kt	24 kt	27 kt	18 kt	1	0	0	0
4478	61	An aircraft at FL350 is required to commence descent when 85 NM from a VOR and to cross the VOR at FL80. The mean GS for the descent is 340 kt . What is the minimum rate of descent required?	$1800 \mathrm{FT} / \mathrm{MIN}$	$1900 \mathrm{FT} / \mathrm{MIN}$	$1600 \mathrm{FT} / \mathrm{MIN}$	$1700 \mathrm{FT} / \mathrm{MIN}$	1	0	0	0
4479	61	An island is observed by weather radar to be 15° to the left. The aircraft heading is $120^{\circ}(\mathrm{M})$ and the magnetic variation $17^{\circ} \mathrm{W}$. What is the true bearing of the aircraft from the island?	088 ${ }^{\circ}$	122°	268°	302°	0	0	1	-
4480	61	During a low level flight 2 parallel roads that are crossed at right angles by an aircraft. The time between these roads can be used to check the aircraft:	drift	groundspeed	position	track	0	1	0	0
4481	61	Given: FL250, OAT $-15^{\circ} \mathrm{C}$,	0.44	0.39	0.40	0.42	0	0	1	0
4482	61	Given: $\text { TAS = } 220 \text { kt; }$ Magnetic course $=212^{\circ}$,	290 kt	246 kt	250 kt	186 kt	0	0	0	1
4483	61	An aircraft travels 100 statute miles in 20 MIN , how long does it take to travel 215 NM ?	90 MIN	80 MIN	50 MIN	100 MIN	0	0	1	0
4484	61	Given: $\text { TAS = } 485 \text { kt, }$ True HDG $=226^{\circ}$,	$9^{\circ} \mathrm{R}-533 \mathrm{kt}$	$7^{\circ} \mathrm{R}-531 \mathrm{kt}$	$9^{\circ} \mathrm{R}-433 \mathrm{kt}$	$8^{\circ} \mathrm{L}-435 \mathrm{kt}$		10	0	0

4485	61	Which of the following statements conceming earth magnetism is completely correct?	An isogonal is a line which connects places of equal dip; the aclinic is the line of zero magnetic dip	An isogonal is a line which connects places with the same magnetic variation; the aclinic connects places with the same magnetic field strength	An isogonal is a line which connects places with the same magnetic variation; the aclinic is the line of zero magnetic dip	An isogonal is a line which connects places with the same magnetic variation; the agonic line is the line of zero magnetic dip	0	01	
4486	61	Given: Chart scale is $1: 1850000$. The chart distance between two points is 4 centimetres.	40 NM	74 NM	100 NM	4 NM	1	00	0
4487	61	The Earth can be considered as being a magnet with the:	red pole near the north pole of the earth and the direction of the magnetic force pointing strai ght down to the earth's surface	blue pole near the north pole of the earth and the direction of the magnetic force pointing strai ght up from the earth's surface	red pole near the north pole of the earth and the direction of the magnetic force pointing strai ght up from the earth's surface	blue pole near the north pole of the earth and the direction of the magnetic force pointing strai ght down to the earth's surface	0	(1)	
4488	61	Complete the following statement regarding magnetic variation. The charted values of magnetic variation on earth normally change annually due to:	magnetic pole moveme nt causing numerical values at all locations to increase or decrease	magnetic pole moveme nt causing numerical values at all locations to increase.	a reducing field strength causing numerical values at all locations to decrease.	an increasing field strength causing numerical values at all locations to increase.	1	¢	0
4489	61	Which one of the following is an advantage of a remote reading compass as compared with a standby compass?	It eliminates the effect of tuming and acceleration errors by pendulously suspending the detector unit	It is more reliable because it is operated electrically and power is always available from sources withi n the aircraft	It senses the magnetic meridian instead of seeking it, increasing compass sensitivity	It is lighter than a direct reading compass because it employs, apart from the detector unit, existing aircraft equipment	0	01	0
4490	61	Which of the following statements is correct concerning the effect of turning errors on a direct reading compass?	Turning errors are greatest on east/west headings, and are greatest at high latitudes	Turning errors are greatest on north/south headings, and are greatest at high latitudes	Turning errors are greatest on east/west headings, and are least at high latitudes	Turning errors are greatest on north/south headings, and are least at high latitudes	0		

4491	61	Which of the following is an occasion for carrying out a compass swing on a Direct Reading Compass?	Before an aircraft goes on any flight that involves a large change of magnetic latitude	After any of the aircraft radio equipment has been changed due to unserviceabil ity	Whenever an aircraft carries a large freight load regardless of its content	After an aircraft has passed through a severe electrical stom, or has been struck by lightning	0	0
4492	61	The parallels on a Lambert Conformal Conic chart are represented by:	straight lines	parabolic lines	hyperbolic lines	arcs of concentric circles	0	0
4493	61	The main reason that day and night, throughout the year, have different duration, is due to the:	inclination of the ecliptic to the equator	earth's rotation	relative speed of the sun along the ecliptic	gravitational effect of the sun and moon on the speed of rotation of the earth	1	0
4494	61	An aircraft departing $\mathrm{A}\left(\mathrm{N} 40^{\circ} 00^{\prime} \mathrm{E} 080^{\circ} 00^{\prime}\right)$ flies a constant true track of 270° at a ground speed of 120 kt . What are the coordinates of the position reached in 6 HR ?	$\begin{aligned} & \mathrm{N} 40^{\circ} 00^{\prime} \\ & \mathrm{E} 068^{\circ} 10^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{N} 40^{\circ} 00^{\prime} \\ & \mathrm{E} 064^{\circ} 20^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{N} 40^{\circ} 00^{\prime} \\ & \mathrm{E} 070^{\circ} 30^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{N} 40^{\circ} 00^{\prime} \\ & \mathrm{E} 060^{\circ} 00^{\prime} \end{aligned}$	0	1
4495	61	The lines on the earth's surface that join points of equal magnetic variation are called:	isogrives	isoclines	isogonals	isotachs	0	0
4496	61	An island appears 30° to the left of the centre line on an airbome weather radar display. What is the true bearing of the aircraft from the island if at the time of observation the aircraft was on a magnetic heading of 276° with the magnetic variation $12^{\circ} \mathrm{W}$?	234°	038 ${ }^{\circ}$	054 ${ }^{\circ}$	318°	0	0
4497	61	At the magnetic equator, when accelerating after take off on heading West, a direct reading compass :	underreads the heading	indicates a tum to the south	indicates the correct heading	overreads the heading	0	0
4498	61	The ICAO definition of ETA is the:	actual time of arrival at a point or fix	estimated time of arrival at an en-route point or fix	estimated time en route	estimated time of arrival at destination	0	0
4499	61	An aircraft at FL350 is required to descend to cross a DME facility at FL80. Maximum rate of descent is $1800 \mathrm{FT} / \mathrm{MIN}$ and mean GS for descent is 276 kt . The minimum ranne from the RNF at whinh decenent chnold	69 NM	79 NM	49 NM	59 NM	1	0
4500	61	Given: $\begin{aligned} & \text { TAS = } 190 \mathrm{kt}, \\ & \text { True HDG }=085^{\circ}, \end{aligned}$	$4^{\circ} \mathrm{L}-145 \mathrm{kt}$	$8^{\circ} \mathrm{L}-146 \mathrm{kt}$	$7^{\circ} \mathrm{L}-156 \mathrm{kt}$	$4^{\circ} \mathrm{L}-168 \mathrm{kt}$	0	1
4501	61	The term drift refers to the wander of the axis of a gyro in:	the vertical and horizontal plane	any plane	the horizontal plane	the vertical plane	0	0
4502	61	An aircraft at FL370 is required to commence descent when 100 NM from a DME facility and to cross the station at FL1 20. If the mean GS during the descent is 396 kt , the minimum rate of descent required is approximately:	1650 FT/MIN	$2400 \mathrm{FT} / \mathrm{MIN}$	$1000 \mathrm{FT} / \mathrm{MIN}$	$1550 \mathrm{FT} / \mathrm{MIN}$	1	0
4503	61	An aircraft at FL140, IAS 210 kt , OAT $-5^{\circ} \mathrm{C}$ and wind component minus 35 kt , is required to reduce speed in order to cross a reporting point 5 MIN later than planned. Assuming that flight conditions do not change, when 150 NM from the reporting point the IAS should be reduced by:	15 kt	20 kt	25 kt	30 kt	0	1
4504	61	An aircraft at FL370 is required to commence descent at 120 NM from a VOR and to cross the facility at FL130. If the mean GS for the descent is 288 kt , the minimum rate of descent required is:	860 FT/MIN	890 FT/MIN	920 FT/MIN	960 FT/MIN	0	0

4505	61	An aircraft at FL310, M0.83, temperature $-30^{\circ} \mathrm{C}$, is required to reduce speed in order to cross a reporting point five minutes later than planned. Assuming that a zero wind component remains unchanged, when 360 NM from the reporting point Mach Number should	M0.74	M0.76	M0.78	M0.80	1	0	0
4506	61	A Lambert conformal conic chart has a constant of the cone of 0.75 . The initial course of a straight line track drawn on this chart from $A\left(40^{\circ} \mathrm{N} 050^{\circ} \mathrm{W}\right)$ to B is $043^{\circ}(\mathrm{T})$ at A; course at B is 055 ${ }^{\circ}(\mathrm{T})$.	$34^{\circ} \mathrm{W}$	$36^{\circ} \mathrm{W}$	$38^{\circ} \mathrm{W}$	$41^{\circ} \mathrm{W}$	1	0	0
4507	61	Given: Runway direction $210^{\circ}(\mathrm{M})$, C.infonn ininノ nonornnionlt	19 kt	16 kt	13 kt	10 kt	0	0	01
4508	61	At 0422 an aircraft at FL370, GS 320kt, is on the direct track to VOR'X' 185 NM distant. The aircraft is required to cross VOR ' X ' at FL80. For a mean rate of descent of $1800 \mathrm{FT} / \mathrm{MIN}$ at a mean GS of 232 kt ,	0451	0454	0445	0448	0	0	10
4509	61	An aircraft at FL330 is rerquired to commence descent when 65 NM from a VOR and to cross the VOR at FL100. The mean GS during the descent is 330 kt . What is the minimum rate of descent required?	1850 FT/MIN	1950 FT/MIN	1650 FT/MIN	$1750 \mathrm{FT} / \mathrm{MIN}$	0	1	0
4510	61	An aircraft obtains a relative bearing of 315° from an NDB at 0830. At 0840 the relative bearing from the same position is 270°. Assuming no drift and a GS of 240 kt , what is the	60 NM	30 NM	40 NM	50 NM	0	0	10
4511	61	The equivalent of $70 \mathrm{~m} / \mathrm{sec}$ is approximately:	136 kt	145 kt	210 kt	35 kt	1	0	0
4512	61	A ground feat ure was observed on a relative bearing of 325° and five minutes later on a relative bearing of 280°. The aircraft heading was $165^{\circ}(\mathrm{M})$, variation $25^{\circ} \mathrm{W}$, drift 10° Right and GS 360 kt . When the relative bearing was 280°, the distance and true bearing of the aircraft from the feature was:	$\begin{aligned} & 30 \mathrm{NM} \text { and } \\ & 060^{\circ} \end{aligned}$	30 NM and 240°	$\begin{aligned} & 40 \mathrm{NM} \text { and } \\ & 110^{\circ} \end{aligned}$	40 NM and 290°	0	-	00
4513	61	On a chart, the distance along a meridian between latitudes $45^{\circ} \mathrm{N}$ and $46^{\circ} \mathrm{N}$ is 6 cm . The scale of the chart is approximately:	1:185000	$\begin{aligned} & 1: 18500 \\ & 000 \end{aligned}$	1:1850 000	1:1000 000	0	0	10
4514	61	An aircraft at FL120, IAS 200 kt , OAT -5° and wind component +30 kt , is required to reduce speed in order to cross a reporting point 5 MIN later than planned. Assuming flight conditions do not change, when 100 NM from the reporting point IAS should be reduced to:	174 kt	159 kt	165 kt	169 kt	-	-	00
4515	61	Given: Runway direction $083^{\circ}(\mathrm{M})$, 	27 kt	31 kt	34 kt	24 kt	0	-	01
4516	61	Approximately how many nautical miles correspond to 12 cm on a map with a scale of 1:2000000?	130	150	329	43	1	0	0
4517	61	An aircraft at FL350 is required to cross a VOR/DME facility at FL1 10 and to commence descent when 100 NM from the facility. If the mean GS for the descent is 335 kt , the minimum rate	$1340 \mathrm{FT} / \mathrm{MIN}$	1390 FT/MIN	$1240 \mathrm{FT} / \mathrm{MIN}$	1290 FT/MIN	1	0	0
4518	61	An aircraft at FL370, M0.86, OAT $-44^{\circ} \mathrm{C}$, headwind component 110 kt , is required to reduce speed in order to cross a reporting point 5 MIN later than planned. If the speed reduction were to be made 420 NM from the reporting point, what Mach Number is required?	M0.73	M0.75	M0.79	M0.81	0		

4519	61	Given: For take-off an aircraft requires a headwind component of at least 10 kt and has a cross-wind limitation of 35 kt . The angle between the wind direction and the runway is 60°, Calculate the minimum and maximum allowable wind speeds?	$\begin{aligned} & 18 \mathrm{kt} \text { and } \\ & 50 \mathrm{kt} \end{aligned}$	$\begin{aligned} & 20 \mathrm{kt} \text { and } 40 \\ & \mathrm{kt} \end{aligned}$	$\begin{aligned} & 12 \mathrm{kt} \text { and } \\ & 38 \mathrm{kt} \end{aligned}$	$\begin{aligned} & 15 \mathrm{kt} \text { and } \\ & 43 \mathrm{kt} \end{aligned}$	0	1	0	0
4520	61	An aircraft at FL390 is required to descend to cross a DME facility at FL70. Maximum rate of descent is 2500 FT/MIN, mean GS during descent is 248 kt . What is the minimum range from the DME at which descent should commence?	68 NM	53 NM	58 NM	63 NM	0	1	0	0
4521	61	Given: An aircraft is on final approach to runway $32 R\left(322^{\circ}\right)$; The wind velocity reported by the tower is $350^{\circ} / 20 \mathrm{kt}$.; TAS on approach is 95 kt . In order to maintain the centre line, the aircraft's heading	328°	322°	316°	326°	1	0	0	0
4522	61	(For this question use annex 061-1829A and the data for 1300 UTC) 1300 UTC DR position $37^{\circ} 30^{\prime} \mathrm{N} 021^{\circ} 30^{\prime} \mathrm{W}$ alter heading PORT SANTO NDB ($33^{\circ} 03^{\prime} \mathrm{N} 016^{\circ}{ }^{\circ} 3^{\prime} \mathrm{W}$) TAS 450 kt,	1344	1341	1354	1348	0	0	0	1
4523	61	What is the ratio between the litre and the US-GAL?	$\begin{array}{\|l} \hline 1 \text { US-GAL } \\ \text { equals } 4.55 \\ \text { litres } \\ \hline \end{array}$	$\begin{aligned} & 1 \text { litre equals } \\ & \text { 4.55 US-GAL } \end{aligned}$	$\begin{aligned} & 1 \text { US-GAL } \\ & \text { equals } 3.78 \\ & \text { litres } \end{aligned}$	1 litre equals 3.78 US-GAL	0	0	1	-
4524	61	The sensitivity of a direct reading compass varies:	inversely with the vertical component of the earth's magnetic field	directly with the horizontal co mponent of the earth's magnetic field	directly with the vertical component of the earth's magnetic field	inversely with both vertical and horizontal components of the earth's magnetic field	0	1	0	0
4525	61	What is the final position after the following rhumb line tracks and distances have been followed from position $60^{\circ} 00^{\prime} \mathrm{N}$ $030^{\circ} 00^{\prime} \mathrm{W}$? South for 3600 NM, East for 3600 NM, North for 3600 NM.	$\begin{aligned} & 59^{\circ} 00^{\prime} \mathrm{N} \\ & 090^{\circ} 00^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & 60^{\circ} 00^{\prime} \mathrm{N} \\ & 090^{\circ} 00^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & 60^{\circ} 00^{\prime} \mathrm{N} \\ & 030^{\circ} 00^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & 59^{\circ} 00^{\prime} \mathrm{N} \\ & 060^{\circ} 00^{\prime} \mathrm{W} \end{aligned}$	0	1-1	0	-
4526	61	In an Inertial Navigation System (INS), Ground Speed (GS) is calculated:	from TAS and W/V from Air Data Comput er (ADC)	from TAS and W/V from RNAV data	by integrating gyro precession in N/S and E/W directions respectively	by integrating measured acceleration	0	0	0	1
4527	61	Given: $\begin{aligned} & \text { TAS }=375 \text { kt, } \\ & \text { True HDG }=124^{\circ}, \end{aligned}$	126-320 kt	$125-318$ kt	123-320 kt	125-322 kt	0	0	1	0
4528	61	Given: true track 352° variation $11^{\circ} \mathrm{W}$ deviation is -5°	018°	025 ${ }^{\circ}$	358°	346°	-	0	1-1	-

4529	61	Given : True altitude 9000 FT, OAT $-32^{\circ} \mathrm{C}$,	215 kt	200 kt	210 kt	220 kt	0	0	0	1
4530	61	Given: An aircraft is flying a track of $255^{\circ}(\mathrm{M})$, 2254 UTC, it crosses radial 360° from a VOR station, 2300 UTC, it crosses radial 330° from the same station. At 2300 UTC, the distance between the aircraft and the	less than it was at 2254 UTC	the same as it was at 2254 UTC	greater than it was at 2254 UTC	randomly different than it was at 2254 UTC	0	1	-	0
4531	61	The distance between two waypoints is 200 NM, To calculate compass heading, the pilot used $2^{\circ} \mathrm{E}$ magnetic variation instead of $2^{\circ} \mathrm{W}$. Assuming that the forecast W/V applied, what will the off trank dictanmoho at the corned wavnoint?	14 NM	7 NM	0 NM	21 NM	1	0	0	0
4532	61	The scale on a Lambert conformal conic chart :	is constant along a meridian of longitude	is constant across the whole map	varies slightly as a function of latitude and longitude	is constant along a parallel of latitude	0	0	0	1
4533	61	5 HR 20 MIN 20 SEC corre sponds to a longitude difference of:	$75^{\circ} 00$	$78^{\circ} 45{ }^{\prime}$	$8^{\circ} 05^{\prime}$	$81^{\circ} 10$	0	0	1	0
4534	61	The Local Mean Time at longitude $095^{\circ} 20^{\prime} \mathrm{W}$, at 0000 UTC, is :	$\begin{aligned} & 1738: 40 \\ & \text { same day } \end{aligned}$	$\begin{aligned} & \text { 0621:20 } \\ & \text { same day } \end{aligned}$	$\begin{aligned} & \hline 1738: 40 \\ & \text { previous day } \end{aligned}$	0621:20 previous day	0	0	1	0
4535	61	Isogonic lines connect positions that have:	the same angle of magnetic dip	the same variation	0° variation	the same elevation	0	1	0	0
4536	61	The circumference of the earth is approximately:	10800 NM	21600 NM	43200 NM	5400 NM	0	1	0	0
4537	61	Seasons are due to the:	Earth's rotation on its polar axis	variable distance between Earth and Sun	inclination of the polar axis with the ecliptic plane	Earth's elliptical orbit around the Sun	0	0	1	0
4538	61	Given: TAS $=370 \mathrm{kt}$, True HDG $=181^{\circ}$,	$189-370 \mathrm{kt}$	186-370 kt	176-370 kt	192-370 kt	0	1	0	0
4539	61	Civil twilight is defined by :	sun altitude is 12° below the celestial horizon	sun altitude is 18° below the celestial horizon	sun upper edge tangential to horizon	sun altitude is 6° below the celestial horizon	0	-	-	-1
4540	61	Given: $\text { TAS = } 125 \mathrm{kt},$ True HDG $=355^{\circ}$,	002-98 kt	005-102 kt	345-100 kt	348-102 kt	0	1	-	-
4541	61	Given: $\begin{aligned} & \mathrm{TAS}=135 \mathrm{kt}, \\ & \mathrm{HDG}\left({ }^{\circ} \mathrm{T}\right)=278, \end{aligned}$	283-150 kt	279-152 kt	282-148 kt	275-150 kt	1	0	0	0
4542	61	Given: $\begin{aligned} & \mathrm{TAS}=480 \mathrm{kt}, \\ & \mathrm{HDG}\left({ }^{\circ} \mathrm{T}\right)=040^{\circ}, \end{aligned}$	032-425 kt	036-435 kt	034-445 kt	028-415 kt	0	-	1	-
4543	61	Given: $\begin{aligned} & \mathrm{TAS}=155 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=216^{\circ}, \end{aligned}$	226-186 kt	231-196 kt	224-175 kt	222-181 kt	0	1	-	-
4544	61	Given: $\begin{aligned} & \mathrm{TAS}=170 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=100^{\circ}, \end{aligned}$	098-178 kt	109-182 kt	091-183 kt	103-178 kt	-	1-1	0	-

4545	61	Given: $\begin{aligned} & \mathrm{TAS}=235 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=076^{\circ} \end{aligned}$	5R - 207 kt	77R-204 kt	7L-269 kt	5L-255 kt	0	1	0	0
4546	61	Given: $\begin{aligned} & \mathrm{TAS}=440 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=349^{\circ} \end{aligned}$	5L - 385 kt	4L - 415 kt	2L - 420 kt	6L - 395 kt	0	1	0	0
4547	61	Given: True course 300° drift $8^{\circ} \mathrm{R}$ variation $10^{\circ} \mathrm{W}$	294°	278°	306°	322°	0	0	1	0
4548	61	Given: $\begin{aligned} & \mathrm{TAS}=465 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=124^{\circ}, \end{aligned}$	4L-400 kt	6L - 400 kt	8L - 415 kt	3L - 415 kt	0	0	1	0
4549	61	Given: $\begin{aligned} & \text { TAS }=132 \mathrm{kt}, \\ & \text { True HDG }=257^{\circ} \end{aligned}$	$3^{\circ} \mathrm{L}-166 \mathrm{kt}$	$4{ }^{\circ} \mathrm{R}-165 \mathrm{kt}$	$2^{\circ} \mathrm{R}-166 \mathrm{kt}$	$4{ }^{\circ} \mathrm{L}-167 \mathrm{kt}$	0	1	0	0
4550	61	Given: True track 180° Drift 8° R Compass heading 195°	$9^{\circ} \mathrm{W}$	$21^{\circ} \mathrm{W}$	$25^{\circ} \mathrm{W}$	$5^{\circ} \mathrm{W}$	0	1	-	-
4551	61	On a Mercator chart, at latitude $60^{\circ} \mathrm{N}$, the distance measured between W002 ${ }^{\circ}$ and $\mathrm{E} 008^{\circ}$ is 20 cm . The scale of this chart at latitude $60^{\circ} \mathrm{N}$ is approximately:	1:2780 000	1:278000	1:5560 000	1:556000	1	0	0	-
4552	61	An aircraft takes-off from an airport 2 hours before sunset. The pilot flies a track of $090^{\circ}(\mathrm{T})$, W/N $130^{\circ} / 20 \mathrm{kt}$, TAS 100 kt. In order to retum to the point of departure before sunset, the furthest distance which may be travelled is:	115 NM	105 NM	84 NM	97 NM	0	0	0	1
4553	61	Assume a Mercator chart. The distance between positions A and B, located on the same parallel and 10° longitude apart, is 6 cm . The scale at the parallel is $1: 9260000$.	$60^{\circ} \mathrm{N}$ or S	$30^{\circ} \mathrm{N}$ orS	0°	$45^{\circ} \mathrm{N}$ orS	1	0	0	0
4554	61	On a Lambert chart (standard parallels $37^{\circ} \mathrm{N}$ and $65^{\circ} \mathrm{N}$), with respect to the straight line drawn on the map between A ($\mathrm{N} 49^{\circ} \mathrm{W} 030^{\circ}$) and $\mathrm{B}\left(\mathrm{N} 48^{\circ} \mathrm{W} 040^{\circ}\right)$, the:	great circle and rhumb line are to the south	great circle and rhumb line are to the north	great circle is to the north, the rhumb line is to the south	rhumb line is to the north, the great circle is to the south	1	-	-	-
4555	61	A direct Mercator graticule is based on a projection that is :	spherical	concentric	cylindrical	conical	0	0	1	0
4556	61	Given: Aircraft at FL 150 overhead an airport Elevation of aiport 720 FT. QNH is 1003 hPa .	14720 FT	15280 FT	15840 FT	14160 FT	0	1	0	0
4557	61	An aircraft takes off from the ae rodrome of BRIOUDE (altitude 1483 FT , QFE $=963 \mathrm{hPa}$, temperature $=32^{\circ} \mathrm{C}$). Five minutes later, passing 5000 FT on QFE, the second altimeter set on 1013 hPa will indicate approximately :	6400 FT	6800 FT	6000 FT	4000 FT	-	-	-	0
4558	61	Given : ETA to cross a meridian is 2100 UTC GS is 441 kt TAS is 491 kt	75 kt	60 kt	40 kt	90 kt	0	0	1	0

4559	61	The flight log gives the following data : "True track, Drift, True heading, Magnetic variation, Magnetic heading, Compass deviation, Compass heading" The right solution, in the same order, is :	$\begin{aligned} & 117^{\circ}, 4^{\circ} \mathrm{L}, \\ & 121^{\circ}, 1^{\circ} \mathrm{E}, \\ & 122^{\circ},-3^{\circ}, \\ & 119^{\circ} \end{aligned}$	$\begin{aligned} & 125^{\circ}, 2^{\circ} \mathrm{R}, \\ & 123^{\circ}, 2^{\circ} \mathrm{W}, \\ & 121^{\circ},-4^{\circ}, \\ & 117^{\circ} \end{aligned}$	$\begin{aligned} & 119^{\circ}, 3^{\circ}\llcorner, \\ & 122^{\circ}, 2^{\circ} \mathrm{E}, \\ & 120^{\circ},+4^{\circ}, \\ & 116^{\circ} \end{aligned}$	$\begin{aligned} & 115^{\circ}, 5^{\circ} \mathrm{R}, \\ & 120^{\circ}, 3^{\circ} \mathrm{W}, \\ & 123^{\circ},+2^{\circ}, \\ & 121^{\circ} \end{aligned}$	0	0
4560	61	Given : Position 'A' N60 W020, Position 'B' N60 W021, Position 'C' N59 W020.	52 NM and 60 NM	$60 \mathrm{NM} \text { and }$ $30 \text { NM }$	$\begin{aligned} & 60 \mathrm{NM} \text { and } \\ & 52 \mathrm{NM} \end{aligned}$	30 NM and 60 NM	0	0
4561	61	Concerning direct reading magnetic compasses, in the northern hemisphere, it can be said that :	on an Easterly heading, a Iongitudinal acceleration causes an apparent tum to the South	on a Westerly hea ding, a Iongitudinal acceleration causes an apparent tum to the South	on a Westerly hea ding, a Iongitudinal deceleration causes an apparent tum to the North	on an Easterly heading, a Iongitudinal acceleration causes an apparent tum to the North	0	0
4562	61	Given: $\begin{aligned} & \mathrm{TAS}=225 \mathrm{kt}, \\ & \mathrm{HDG}\left({ }^{\circ} \mathrm{T}\right)=123^{\circ}, \end{aligned}$	134-178 kt	134-188 kt	120-190 kt	128-180 kt	1	0
4563	61	Compass deviation is defined as the angle between:	True North and Compass North	the horizontal and the total intensity of the earth's magnetic field	Magnetic North and Compass North	True North and Magnetic Nor th	0	-
4564	61	At 0020 UTC an aircraft is crossing the 310° radial at 40 NM of a VOR/DME station. At 0035 UTC the radial is 040° and DME distance is 40 NM . Magnetic variation is zero.	080 ${ }^{\circ}-226 \mathrm{kt}$	088 ${ }^{\circ}-232 \mathrm{kt}$	085 ${ }^{\circ}-226 \mathrm{kt}$	090 ${ }^{\circ}-232 \mathrm{kt}$	0	0
4565	61	A straight line on a chart 4.89 cm long represents 185 NM . The scale of this chart is approximately :	1:5000 000	1:7000 000	$1: 3500000$	1:6000 000	0	1
4566	61	From the departure point, the distance to the point of equal time is :	inversely proportional to ground speed back	inversely proportional to the sum of ground speed out and ground speed back	proportional to the sum of ground speed out and ground speed back	inversely proportional to the total distance to go	-	1-1
4567	61	Given: Required course $045^{\circ}(\mathrm{M})$; Variation is $15^{\circ} \mathrm{E}$; W / V is $190^{\circ}(\mathrm{T}) / 30 \mathrm{kt}$;	$\begin{aligned} & 036^{\circ} \text { and } 151 \\ & \mathrm{kt} \end{aligned}$	$\begin{aligned} & 052^{\circ} \text { and } 154 \\ & \mathrm{kt} \end{aligned}$	$\begin{aligned} & 056^{\circ} \text { and } 137 \\ & \mathrm{kt} \end{aligned}$	$\begin{aligned} & 055^{\circ} \text { and } 147 \\ & \mathrm{kt} \end{aligned}$	-	-
4568	61	Given: $\text { TAS = } 270 \mathrm{kt} \text {, }$ True HDG $=145^{\circ}$,	$6^{\circ} \mathrm{R}-259 \mathrm{kt}$	$6^{\circ} \mathrm{L}-256 \mathrm{kt}$	$6^{\circ} \mathrm{R}-251 \mathrm{kt}$	$8^{\circ} \mathrm{R}-261 \mathrm{kt}$	0	1
4569	61	Given: Airport elevation is 1000 ft . QNH is 988 hPa . What is the approximate airport pressure altitude?	1680 FT	320 FT	680 FT	- 320 FT	-	0
4570	61	Given: Maximum allowable crosswind component is 20 kt . Runway 06, RWY QDM $063^{\circ}(\mathrm{M})$. Wind direction $100^{\circ}(\mathrm{M})$	25 kt	33 kt	31 kt	26 kt	0	1

4571	61	The circumference of the parallel of latitude at $60^{\circ} \mathrm{N}$ is approximately:	18706 NM	20000 NM	\|34641 NM	10800 NM	0	0	0	1
4572	61	Given: Runway direction $230^{\circ}(\mathrm{T})$,	31 kt	36 kt	21 kt	26 kt	1	0	0	0
4573	61	Given: $\begin{aligned} & \text { True HDG = } 206^{\circ}, \\ & \text { TAS }=140 \mathrm{kt}, \\ & \text { Track }(\mathrm{T})=207^{\circ}, \end{aligned}$	180/10kt	180/05kt	000/05kt	000/10kt	0	1	0	0
4574	61	Given: $\begin{aligned} & \mathrm{TAS}=95 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=075^{\circ}, \end{aligned}$	8R-104 kt	9R-108 kt	10L - 104 kt	9L-105 kt	0	1	0	0
4575	61	Given: $\begin{aligned} & \mathrm{TAS}=227 \mathrm{kt}, \\ & \operatorname{Track}(\mathrm{~T})=316^{\circ}, \end{aligned}$	312-232 kt	311 -230 kt	$313-235$ kt	310-233 kt	1	0	0	0
4576	61	Given: $\begin{aligned} & \mathrm{TAS}=198 \mathrm{kt}, \\ & \mathrm{HDG}\left({ }^{\circ} \mathrm{T}\right)=180, \end{aligned}$	179-220 kt	181 -180 kt	$180-183 \mathrm{kt}$	$180-223 \mathrm{kt}$	0	0	0	1
4577	61	Given: $\begin{aligned} & \mathrm{TAS}=200 \mathrm{kt}, \\ & \text { Track }(\mathrm{T})=073^{\circ}, \end{aligned}$	075-213 kt	077-210 kt	077-214 kt	079-211 kt	-	0	1-1	0
4578	61	Given: $\begin{aligned} & \mathrm{TAS}=200 \mathrm{kt}, \\ & \operatorname{Track}(\mathrm{~T})=110^{\circ}, \end{aligned}$	097-201 kt	099-199 kt	121 -207 kt	121 -199 kt	0	1	0	0
4579	61	Given: $\begin{aligned} & \mathrm{TAS}=270 \mathrm{kt}, \\ & \operatorname{Track}(\mathrm{~T})=260^{\circ}, \end{aligned}$	262-237 kt	264-241 kt	264-237 kt	262-241 kt	0	0	-	1
4580	61	Given: $\begin{aligned} & \text { True HDG }=307^{\circ}, \\ & \text { TAS }=230 \mathrm{kt}, \\ & \text { Track }(\mathrm{T})=313^{\circ}, \end{aligned}$	265/30kt	260/30kt	257/35kt	255/25kt	0	1-1	-	0
4581	61	$\begin{aligned} & \text { Given: } \\ & \text { True HDG }=233^{\circ}, \\ & \text { TAS }=480 \mathrm{kt}, \\ & \text { Track }(\mathrm{T})=240^{\circ}, \end{aligned}$	105/75kt	110/75kt	115/70kt	110/80kt	0	1	-	0
4582	61	Given: $\begin{aligned} & \mathrm{TAS}=155 \mathrm{kt}, \\ & \operatorname{Track}(\mathrm{~T})=305^{\circ}, \end{aligned}$	305-169 kt	309-170 kt	309-141 kt	301-169 kt	0	0	0	1
4583	61	Given: $\begin{aligned} & \text { True HDG }=074^{\circ}, \\ & \text { TAS }=230 \mathrm{kt}, \\ & \text { Track }(\mathrm{T})=066^{\circ}, \end{aligned}$	180/40kt	180/35kt	180/30kt	185/35kt	0	1	0	0
4584	61	Given: $\begin{aligned} & \mathrm{TAS}=130 \mathrm{kt}, \\ & \operatorname{Track}(\mathrm{~T})=003^{\circ}, \end{aligned}$	002-173 kt	359-166 kt	357-168 kt	001-170 kt		0	0	1

4585	61	\|Given: True HDG $=054^{\circ}$, TAS $=450 \mathrm{kt}$, Track $(T)=059^{\circ}$,	010/45kt	010/50kt	\|005/50kt	010/55kt	0	1	
4586	61	$\begin{aligned} & \text { Given: } \\ & \text { True HDG }=145^{\circ}, \\ & \text { TAS }=240 \mathrm{kt}, \\ & \text { Track }(\mathrm{T})=150^{\circ}, \end{aligned}$	360/35kt	180/35kt	295/35kt	115/35kt	0	0	
4587	61	Given: True HDG = 002°, TAS = 130 kt, Track $(\mathrm{T})=353^{\circ}$,	095/25kt	095/20kt	090/15kt	090/20kt	0	1	
4588	61	Given: True HDG $=035^{\circ}$, TAS $=245 \mathrm{kt}$, Track $(T)=046^{\circ}$,	335/55kt	340/45kt	340/50kt	335/45kt	0	0	0
4589	61	Given: course required $=085^{\circ}(T)$, Forecast W/V 030/100kt, $\text { TAS }=470 \mathrm{kt},$	096, 29 MIN	095, 31 MIN	075 ${ }^{\circ}$, 39 MIN	$076{ }^{\circ}$, 34 MIN	0	0	0
4590	61	Given: True course from A to $B=090^{\circ}$, $\begin{aligned} & \mathrm{TAS}=460 \mathrm{kt}, \\ & \mathrm{~W} / \mathrm{V}=360 / 100 \mathrm{kt}, \end{aligned}$	069 - 448 kt	068 ${ }^{\circ}-460 \mathrm{kt}$	078 ${ }^{\circ}-450 \mathrm{kt}$	070 ${ }^{\circ}-453 \mathrm{kt}$	1	-	
4591	61	For a landing on runway $23\left(227^{\circ}\right.$ magnetic) surface W $/ \mathrm{V}$ reported by the ATIS is $180 / 30 \mathrm{kt}$. VAR is $13^{\circ} \mathrm{E}$.	20 kt	22 kt	26 kt	15 kt	0	1	-
4592	61	Given: true track is 348°, drift 17° left, variation $32^{\circ} \mathrm{W}$,	033°	007°	359°	337°	-	0	-
4593	61	Given: Maximum allowable tailwind component for landing 10 kt . Planned runway 05 (047° magnetic). The direction of the surface wind reported by ATIS 210°. Variation is $17^{\circ} \mathrm{E}$. Calculate the maximum allowable windspeed that can	18 kt	8 kt	15 kt	11 kt	0	0	0
4594	61	Given: True HDG = 133°, TAS = 225 kt, Track $(\mathrm{T})=144^{\circ}$,	075/50kt	075/45kt	070/40kt	070/45kt	0	1	0
4595	61	Given: $\begin{aligned} & \mathrm{TAS}=190 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=355^{\circ}, \end{aligned}$	1R - 165 kt	1L-215 kt	$1 \mathrm{~L}-225 \mathrm{kt}$	1R-175 kt	0	1	0
4596	61	Given: $\begin{aligned} & \text { TAS = } 140 \mathrm{kt}, \\ & \text { HDG }(T)=005^{\circ}, \end{aligned}$	11R - 142 kt	11R - 140 kt	10R - 146 kt	9R-140 kt	0	0	1-1

4597	61	Given: $\begin{aligned} & \mathrm{TAS}=465 \mathrm{kt}, \\ & \operatorname{Track}(\mathrm{~T})=007^{\circ}, \end{aligned}$	\|358-428 kt	\|001-432 kt	$000-430 \mathrm{kt}$	\|357-430 kt	1	0	0	0
4598	61	Given: $\begin{aligned} & \text { TAS = } 485 \mathrm{kt}, \\ & \text { HDG }(T)=168^{\circ}, \end{aligned}$	175-420 kt	$175-432 \mathrm{kt}$	$174-428 \mathrm{kt}$	$173-424 \mathrm{kt}$	0	0	1	0
4599	61	Given: $\begin{aligned} & \mathrm{TAS}=230 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=250^{\circ}, \end{aligned}$	1L-225 kt	1R-221 kt	2R-223 kt	2L-224 kt	0	0	1	0
4600	61	Given: $\begin{aligned} & \mathrm{TAS}=90 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=355^{\circ}, \end{aligned}$	358-101 kt	359-102 kt	346-102 kt	006-95 kt	0	0	1	-
4601	61	Given: $\begin{aligned} & \text { TAS = } 132 \mathrm{kt}, \\ & \text { HDG }(\mathrm{T})=053^{\circ}, \end{aligned}$	057-144 kt	052-143 kt	051-144 kt	050-145 kt	0	0	0	1
4602	61	Given: $\begin{aligned} & \text { TAS = } 205 \mathrm{kt}, \\ & \text { HDG }(T)=180^{\circ}, \end{aligned}$	4L - 195 kt	6L-194 kt	7L - 192 kt	3L-190 kt	0	-	0	0
4603	61	Given: $\begin{aligned} & \mathrm{TAS}=250 \mathrm{kt}, \\ & \mathrm{HDG}(\mathrm{~T})=029^{\circ}, \end{aligned}$	1L-205 kt	1R-205 kt	1L - 265 kt	1R-295 kt	1	0	0	0

