PERFORMANCE OF AEROPLANES

34 1hr

							-	-	-	
		Which of the following statements with regard to the actual	The	There is no	The	A lower height				
		acceleration height at the beginning of the 3rd climb	minimumval	legal	minimumval	than 400 ft is				
		segment is correct?	ue according	minimum	ue according	allowed in				
			to	value,	to	special				
			regulations is	be cause this	regulations is	circumstances				
			1000 ft.	will be	400 ft.	e.g. noise				
				determined		abatement.				
				from case to						
				case during						
				the						
				calculation						
				of the net						
1720	32			flight path.			0	0	1	0
		What is the influence of the mass on maximum rate of climb	The ROC is	The ROC	The ROC	The ROC				
		(ROC) speed if all other parameters remain constant?	affected by	andthe	speed	speed				
			the mass,	ROC speed	increases	decreases				
			but not the	are	with	with increasing				
			ROC speed.	independant	increasing	mass.				
				of the mass.	mass.					
1721	32						0	0	1	0
		Which take-off speed is affected by the presence or	VMCA	V1	V2	VMCG				
1722	32	absence of stopway and/or clearway ?					0	1	0	0
		Uphill slope	increases the	increases the	decreases	decreases the				
			allowed	take-off	the accelerat	take-off				
			take-off	distance	e stop	distance only.				
			mass.	morethan	distance					
				the	only.					
				accelerate						
				stop						
1723	32			distance.			0	1	0	0
		Balanced V1 is selected	ifitis equal	if the	forarunway	forarunway				
			to V2.	accelerate	length	length limited				
				stop	limited take-o	take-off with a				
				distance is	ff with a	clearway to				
				equal to the	stopway to	give the				
				oneengine	give the	highest mass.				
				out take-off	highest					
				distance.	mass.					
1724	32						0	1	0	0
		A 'Balanced Field Length' is said to exist where:	The	The clearway	The	The one				
			accelerate	does not	accelerate	engine out				
			stop	equal the	stop	take-off				
			distance is	stopway.	distance is	distance is				
			equal to the		equal to the	equal to the all				
			take-off		allengine	engine take-off				
1 705	20		distance		take-off	distance.				
1725	32		available.		distance.		11	0	0	U
1 700	22	V2 has to be equal to or higher than	1.15 VMCG.	1.1 V SO.	1.15 VR.	1.1 VMCA.				
11/20	J3∠		1	1	1	1 I	10		U	

1727	32	Which one of the following statements concerning drift-down is correct?	The drift-down procedure requires a minimum descent angle after an engine failure at cruising altitude.	The drift-down procedure requires a minimum obstacle clearance of 35 ft.	An engine failure at high cruising altitude will always result in a drift-down, because it is not permitted to fly the same altitude with one engine inoperative as with all engines operating.	When determining the obstacle clearance during drift-down, fuel dumping may be taken into account.	0	0	0	1
1121		The take-off safety speed V2min for turbo-propeller powered aeroplanes with more than three engines may not be less	1.2 Vs	1.2 Vs1	1.15 Vs	1.3Vs		Ū		Ħ
1728	32	than: The long range cruise speed is in relation to the speed for maximum range cruise.	Depending on density	Higher	Lower	Depending on the OAT and	0	0	1	0
1729	32		altitude and mass.			net mass.	0	1	0	0
1730	32	According to JAR-OPS 1, which one of the following statements concerning the landing distance for a turbojet aeroplane is correct?	Malfunctionin g of an anti-skid system has no effect on the required runway length.	The landing distance is the distance from 35 ft above the surface of the run way to the full stop.	When determining the maximum all owable landing mass at destination, 60% of the available landing runway length should be taken into account.	Reverse thrust is one of the factors always taken into account when determining the landing distance required.	0	0	1	0
1731	32	The take-off mass of an aeroplane is restricted by the climb limit. What would be the effect on this limit of an increase in the headwind component?	The climb limited take-off mass would increase.	The climb limited take-off mass would decrease.	None.	The effect would vary depending upon the height of any obstacle within the net take-off flight path.	0	0	1	0
1732	32	If the field length limited take off mass has been calculated using a Balanced Field Length technique, the use of any additional clearway in take off performance calculations may allow	a greater field length limited take off mass but with a lower V1	a greater field length limited take off mass but with a higher V1	the obstacle clearance limit to be increased with no effect on V1	the obstacle clearance limit to be increased with an higher V1	1	0	0	0
1733	32	The speed V2 is	the lowest safety airspeed at which the aeroplane is under control with aerodynamic surfaces in the case of an engine failure.	the take-off safety speed.	that speed at which the PIC should decide to continue or not the take-off in the case of an engine failure.	the lowest airspeed required to retract flaps witho ut stall problems.	0	1	0	0

		Which statement regarding the influence of a runway	increases V1	reduces V1	increases V1	reduces V1				Π
		down-slope is correct for a balanced take-off? Down-slope	and	andreduces	andreduces	andincreases				
			increases the	take-off	the	the accelerate				
			distance	required	stop	required				
			required	(TODR).	distance requ	(ASDR).				
			(TODR).	, , ,	ired (ASDR).	, ,				
1 70 4	20									
1734	32	Which of the following statements is applicable to the	The	The	There is no	The minimum		Ľ	0	H
		acceleration height at the beginning of the 3rd climb	maximum	minimumleg	requirement	oneengine				
		segment ?	acceleration	ally allowed	forminimum	out acceleratio				
			height	acceleration	climb	n height must				
			depends on	height is at	performance	be maintained				
			meximum tim	1500 π.	when flying	In case of all				
			e take-off		acceleration	operating.				
			thrust may		height.					
1705	20		be applied.							
1735	ა∠ 	Which of the following statements with recard to the	An aeroplane	An aeroplane	An aeroplane	An aeroplane	\vdash			\mathbb{H}
		optimum cruise altitude (best fuel mileage) is correct?	usually flies	sometimes	always flies	always flies on			1	
			above the	flies above	below the	theoptimum				
			optimum	theoptimum	optimum	cruise altitude,				
			ciuise	altitude	ciuise					
			this provides	because	otherwise	from an				
			thelargest	ATC	Mach buffet	economy point				
			specific	normally	can occur.	of view.			1	
			range.	does not						
				allow to fly						
				at the						
				optimum						
				cruise						
1726	22			altitude.				1		
1730	32	Which speed provides maximum obstacle clearance during	The speed	V2 + 10 kt.	The speed	V2.				\mathbb{H}
		climb?	for which the		formaximum					
			ratio between		rate of climb.					
			rate of climb							
			speed is							
			maximum.							
1727	32								0	
1737	52	In a given configuration the endurance of a piston engined	speed, mass	altitude,	altitude,	speed and	ŀ			H
		aeroplane only depends on:	and fuel on	speed, mass	speed and	mass.			1	
			board.	and fuel on	mass.				1	
1738	32			board.			0	1	0	0
-		A multiengine aeroplane is flying at the minimum control	Straight flight	Straight flight	Heading,	Altitude	T	F	t	\square
		speed (VMCA). Which parameter(s) must be maintainable		andaltitude	altitude and					
		arter engine tailure?			a positive					
					of 100 ft/min				1	
1739	32						1	0	0	0
		Which statement regarding the relationship between traffic	The	The	The	The traffic load				1
		load and range is correct?	maximum	maximum	maximum	can be limited			1	
			mass limits	mass is	notlimited by	range			1	
			the	basically	the reserve				1	
			maximum qu	equal to the	fuel quantity.				1	
			antity of fuel.	maximum						
1740	32			zero fuel mass			0	0	0	$ _1 $
		The take-off safety speed V2 for two-engined or	1.3Vs	1.15 Vs	1.15 Vs1	1.2 Vs	Ť	ť	Ť	Ħ
4 7 4 4	20	three-engined turbopropeller powered aeroplanes may not								
1741	<u>32</u>	be less than: Which of the international retirements he low is not a contific due to ret	Movimum	Movimum		Movingung	10	10	0	₽₽
		which of the jet engine ratings below is not a certified rating?	Cruise Thrust	Continuous	GO-Arouna Thrust	Take-off Thrust			1	
1742	32			Thrust			1	0	0	0
							-	_	_	_

		Which statement with respect to the step climb is correct?	Performing a step climb based on economy can be limited by the 1.3-g altitude.	In principle a step climb is performed immediately after the aircraft has exceeded the optimum altitude.	A step climb may not be performed unless it is indicated in the filed flight plan.	A step climb provides better e conom y than a cruise climb.				
1743	32	The speed VIO is defined as	long distance	lift off speed	landing gear	design low	1	0	0	0
1744	32		operating speed.	int on speed.	operating speed.	operating speed.	0	0	1	0
		The speed V2 is defined for jet aeroplane as	take-off climb speed or speed at 35	lift off speed.	take-off decision speed.	critical engine failure speed.				
1745	32	The speed VS is defined as	ft. speed for best specific range.	stalling speed or minimum steady flight speed at which the aeroplane is controllable.	safety speed for take-off in case of a contaminated run way.	design stress speed.	1	0	0	0
1746	32 32	The speed V1 is defined as	take-off decision	take-off climb speed.	speed for bestangle of climb.	engine failure speed.	0	1	0	0
17/8	32	With all other things remaining unchanged and with T the outside static air temperature expressed in degrees K, the hourly fuel consumption of a turbojet powered aeroplane in a cruise flight with a constant Mach Number and zero headwind, is as follows:	independent from T	proportional to T	proportion al to 1/T ²	proportional to 1/T		1		
1740	32	Two identical turbojet aeroplanes (whose specific fuel consumption is assumed to be constant) are in a holding pattern at the same altitude. The mass of the first one is 95 000 kg and its hourly fuel consumption is equal to 3100 kg/h. Since the mass of the second one is 105 000 kg, its hourly fuel consumption is:	3787 kg/h	3426 kg/h	32.59 kg/h	3602 kg/h	0	0	1	0
17.10		A constant headwind component	increases the	decreases	increases the	increases the				Ē
4750			climb.	the angle of climb.	maximum endurance.	angle of flight path during				
1750	32	On a twin engined piston aircraft with variable pitch propellers, for a given mass and altitude, the minimum drag speed is 125 kt and the holding speed (minimum fuel burn per hour) is 95 kt.	inferior to 95 kts	is between 95 and 125 kt	equal to 125 kt	equal to 95 kt				
1751	32	The best rate of climb speed will be obtained for a speed: Density altitude is the	height above	pressure	altitude	altitude read	0	0	0	
1752	32		the surface	altitude corrected for 'non standard' tem perature	reference to the standard datum plane	directly from the altimeter	0	1	0	0
4		If other factors are unchanged, the fuel mileage (nautical miles perkg) is	independent from the centre of gravity	lower with an aft centre of gravity position.	higher with a forward centre of gravity	lower with a forward cent re of gravity position.		-		
1 /53	32	V1 has to be	position. higher than	equal to or	position.	equal to or	0	0	10	
1754	32		than VR.	higher than V2.	higher than VMCG.	higher than VMCA.	0	0	1	0
			ī							ليصله

		The take-off distance of an aircraft is 600m in standard	685 m	755 m	715 m	555 m				П
		atmosphere, no wind at 0 ft pressure-altitude.								
		Using the following corrections:								
		"± 20 m/ 1 000 ft field elevation"								
		"- 5 m / kt headwind"								
		"+ 10 m / kt tail wind"								
		"± 15 m/% runway slope"								
1755	32	"+ 5 m / °C deviation from standard temperature"					0	1	0	0
		On a reciprocating engined aeroplane, to maintain a given angle of attack, configuration and altitude at higher gross mass	an increase in airspeed is required but power setting does not change.	requires an increase in power and decrease in the airspeed.	an increase in airspeed and power is required.	a higher coefficient of drag is required.				
1756	32						0	0	1	0
		On a reciprocating engined aeroplane, to maintain a given angle of attack, configuration and altitude at higher gross mass	the lift/drag ratio must be increased.	the airspeed will be increased but the drag does not change.	the airspeed and the drag will be increased.	the airspeed will be decreased and the drag increased.				
1757	32						0	0	1	0
		The take-off distance required increases	dueto downhill slope	due to head wind	due to lower gross mass	due to slush on the runway.				
			because of	the drag						
			angle of	n.						
1758	32	Due to standing uptor on the number the field longth limited	attack.	up off a sta d	on hy high or	lower	0	0	0	1
		take-off mass will be	nigner.	unanected.	for three and four engine aeroplanes.	lower.				
1759	32						0	0	0	1
1760	32	On a dry runway the accelerate stop distance is increased	by uphill slope.	by headwind.	by low outside air temperature.	by a lower take-off mass because the aeroplane accelerates faster to V1.	1	0	0	0
		Which statement regarding V1 is correct?	When	The	VR may not	V1 may not be				Π
1761	32		determining V1, reverse thrust may only be used on the remaining symmetric engines	correction for up-slope on the balanced V1 is negative	be lower than V1	higher than Vmcg	0	0	1	0
		How does the thrust of fixed propeller vary during take-off	has no	decreases	increases	varies with	Ť	Ť	ŀ	Ĥ
		run?Thethrust	change during take-off and climb.	slightly while the aeroplane sp eed builds up.	slightly while the aeroplane sp eed builds up.	mass changes only.				
1762	32						0	1	0	0
		During climb to the cruising level, a headwind component	increases the amount of fuel for the climb.	increases the climb time.	decreases the climb time.	decreases the ground distance flown during that				
1763	32				·	climb.	0	0	0	1
4 - 0 4		A constant headwind	increases the angle of the descent	increases the angle of descent.	ncreases the rate of descent.	Increases the descent distance over				
1764	32		flight path.			ground.	1	0	0	0

1765	32	VR cannotbelowerthan:	105% of V1 and VMCA.	1.2 Vs for twin and three engine jet aeroplane.	1.15 Vs for turbo-prop with three or more engines.	V1 and 105% of VMCA.	0	0	0	1
		By what factor must the landing distance available (dry runway) for a turbojet powered aeroplane be multiplied to find the landing distance required? (planning phase for	60/115	0.60	115/100	1.67				
1766	32	destination). (For this question use annex 032-6570A or Performance Manual SEP 1 Figure 2.4) With regard to the landing chart for the single engine aeroplane determine the landing distance from a height of 50 ft .	approximately : 1300 feet	approximately : 950 feet	approximately : 1400 feet	approximately: 750 feet	0	1	0	0
1767	32	O.A.T : ISA +15℃ Pressure Altitude: 0 ft					1	0	0	0
		(For this question use annex 032-6571 A or Performance Manual SEP 1 Figure 2.4) With regard to the landing chart for the single engine aeroplane determine the landing distance from a height of 50 ft .	approximately : 1700 feet	approximately :1150 feet	approximately : 1500 feet	approximately : 920 feet				
1768	32	Given : O.A.T : ISA Pressure Altitude: 1000 ft					1	0	0	0
		(For this question use annex 032-6572A or Performance Manual SEP 1 Figure 2.4) With regard to the landing chart for the single engine aeroplane determine the landing distance from a height of 50 ft . Given :	approximately : 1480 feet	approximately : 940 feet	approximately : 1650 feet	approximately : 1150 feet				
1769	32	O.A.T : 0°C Pressure Altitude: 1000 ft					0	0	1	0
		 (For this question use annex 032-6573A or Performance Manual SEP 1 Figure 2.4) With regard to the landing chart for the single engine aeroplane determine the landing distance from a height of 50 ft . Given : O.A.T : ISA +15°C Pressure Altitude: 0 ft Aeroplane Mass: 2940 lbs 	approximately : 1450 feet	approximately :1794 feet	approximately : 1300 feet	approximately : 2000 feet				
1770	32						10	1	10	101

		(For this question use annex 032-6574A or Performance Manual SEP1 Figure 2.1)	approximately : 2800 feet	approximately : 2200 feet	approximately : 2470 feet	approximately: 1440 feet				
		With regard to the take off performance chart for the single engine aeroplane determine the take off distance to a height of 50 ft.								
		Given :								
1771	32						0	0	1	0
		(For this question use annex 032-6575A or Performance Manual SEP 1 Figure 2.1)	2900 lbs	> 3650 lbs	3240 lbs	3000 lbs				
		With regard to the take off performance chart for the single engine aeroplane determine the maximum allowable take off mass .								
		Given :								
		O.A.T : ISA								
		Pressure Altitude: 4000 ft								
1772	32	Headwind component: 5 kt					0	0	1	0
		(For this question use annex 032-6576A or Performance	approximately	approximately	approximately	approximately :				
		Manual SEP 1 Figure 2.2)	: 2050 ft	: 1150 ft	: 2450 ft	1260 ft				
		With regard to the take off performance chart for the single engine aeroplane determine the take off distance to a height of 50 ft.								
		Given :								
		O.A.T : -7°C								
1773	32	Pressure Altitude: 7000 ft					1	0	0	0
		On a segment of the take-off flight path an obstacle requires a minimum gradient of climb of 2.6% in order to provide an adequate margin of safe clearance. At a mass of 110000 kg the gradient of climb is 2.8%. For the same power and assuming that the sine of the angle of climb varies inversely with mass, at what maximum mass will the aeroplane be able to achieve the minimum gradient?	106425 kg	118455 kg	1021 <i>5</i> 0 kg	121310 kg				
1774	32						0	1	0	0
		(For this question use annex 032-6569A or Performance Manual SEP 1 Figure 2.4)	approximately : 1120 feet	approximately : 1700 feet	approximately : 1370 feet	approximately : 1850 feet				
		With regard to the landing chart for the single engine aeroplane determine the landing distance from a height of 50 ft.								
		Given :								
		O.A.T : 27 °C								
		Pressure Altitude: 3000 ft								
1775	32		296 7 91 kg	74.064.kg	200.064 kg	101 506 kg	0	0	0	1
		aeroplane are as follows:		1'4 004 NY	203004 Ky	10 1 3 30 Kg				
		Thrust = 50 000 Newton / Engine								
		g = 10 m/s²								
		Drag = 72 569 N								
1776	32	Minimum gross gradient (2nd segment) = 2.7%					0	0	0	1

		What affect has a tailwind on the maximum endurance	Noaffect	Tailwind only	The IAS will	The IAS will be				
		speed :		holding	be increased.	decleased.				
4				speed.						
1///	32	When the outside air temperature increases, then	thofiold	thofiold	thafiald	the field length	1	0	0	0
		when the outside an temperature increases, then	length	length	length	limited take-off				
			limited take-o	limited take-o	limited take-o	mass				
			ff mass and	ff mass and	ff mass	increases but				
			the climb	the climb	decreases	theclimb				
			limited	limited	but the climb	limited take-off				
			take-on mass decrea	take-on	limited	mass				
			ses.	es.	mass increas					
1778	32				es.		1	0	0	0
		With regard to a take-off from a wet runway, which of the	The screen	When the	In case of a	Screenheight				П
		following statements is correct?	height can	runway is	reverser	can not be				
			be lowered	wet, the V1	inoperative	reduced.				
			the mass	sufficient to	ine wei rupway					
			penalties.	maintain the	performance					
				same	information					
				margins on	can still be					
				therunway	used.					
1779	32	The second state of the trade of the second state of the second st	de a se la Maria	length.	the second state		1	0	0	0
		I ne one engine out take-off run is the distance between the	the sourcest	the lift-off	the point	the point half				
		brake release point and.	between	pom.	reached.	V1 and V2.				
			VLOF point							
			and 35 ft							
			point.				.			
1780	32	The decision around at take of $(1/4)$ is the collibrated	ha law which	ot which the	ha law which	at which the	1	0	0	0
		airspeed	the take-off	failure of the	take-off	take-off must				
			must be	critical	must be	be rejected.				
			continued.	engine is	rejected if an					
				expected to	engine failure					
				occur.	is 					
					recognized, a					
					take-off					
					mustbe					
1781	32				continued.		0	0	1	0
		With regard to a unaccelerated horizontal flight, which of the	The	The	The	The minimum				
		following statement is correct?	minimum dra	minimum dra	minimum dra	drag is a				
			function of	independant	proportional	pressure				
			the density	of the aircraft	to the	altitude.				
			altitude.	mass.	aircraft mass.					
1782	32						0	0	1	0
		Which of the following statements is correct?	Induced drag	Induced drag	Induced drag	Induced drag				
			independent	with	with	increases with				
			of the speed.	increasing	increasing	speed.				
				angle of	speed.					
1 700				attack.						
1/03	32	Which of the following statements is correct?	the minimum	the minimum	the minimum	the minimum			\vdash	H
			drag	drag	drag	drag				
		If the aircraft mass, in a horizontal unaccelerated flight,	decreases	increases	increases	decreases				
		decreases	and the IAS	and the IAS	and the IAS	and the IAS				
			for minimum	for minimum	forminimum	forminimum				
			drag	drag	drag	drag				
1784	32		ueuieases.	ueuieases.	1110100305.	110100303.	1	0	0	0
		Consider the graphic representation of the power required	maximum	minimum	maximum	critical angle of	T	Γ	1	Π
		versus true air speed (TAS), for a jet aeroplane with a given	en du rance.	power.	specific	attack.				
		mass. When drawing the tangent out of the origin, the point			range.					
1785	32	or contact determines the speed of:					1	0	0	0
			1	1			<u>ا</u>	1	ت	لت

		A jet aeroplane is performing a maximum range flight.	the point of	the minimum	theminimum	the point of				
		The speed corresponds to:	contact of	drag.	required	contact of the				
			from the		power.	the origin to				
			origin to the			the power				
			Dragversus			required (Pr)				
			TAS curve.			versus TAS				
1786	32					curve.	1	0	0	0
		If the value of the balanced V1 is found to be lower than	The ASDR	The take-off	The one	The VMCG will		F	T	Ħ
		VMCG, which of the following is correct?	will become	is not	engine out	be lowered to				
			greater than	permitted.	take-off	V1.				
			engine out		become					
			take-off		greater than					
4 707			distance.		the ASDR.					
1787	32	(For this question use anney 032.65.81Å or Performance	18 832 ft	18 3/7 ft	21 505 ft	24 637 ft	0	1	0	0
		Manual SEP 1 Figure 2.3)	10 052 1	10 54711	21 30311	24 037 10				
		Using the climb performance chart, for the single engine								
		of 2000 ft above the reference zero in the following								
		conditions:								
		Given :								
		O.A.T. at take-off: 25°C								
1788	32	Airport proceurs altitude: 1000 ft					0	1	0	0
		The speed VR	is the speed	must be	must be	must be equal			T	Н
			at which	higher than	higher than	to or lower				
			rotation to	V2.	VLOF.	than V1.				
			angle of							
			attack is							
1 700	22		initiated.							
1789	32	The stalling speed or the minimum steady flight speed at	VS	VMC	VSO	VS1		10		
		which the aeroplane is controllable in landing configuration	10.	vivio.	1000.	101.				
1790	32	is abbreviated as					0	0	1	0
		(For this question use annex 032-6590A or Performance Manual SEP 1 Figure 2.4)	880 ft	1550 ft	1020 ft	1400 ft				
		Using the Landing Diagramm, for single engine aeroplane,						1		
		determine the landing distance (from a screen height of 50								
		ft) required, in the following conditions:								
		Given :								
		Pressure altitude: 4000 ft								
		O.A.T.: 5°C								
		Aeroplane mass: 3530 lbs								
1791	32	Headwind component: 15 kt	20.0/	45.0/	F 0/	40.0/	0	0	0	\downarrow^1
		in the arrworthiness documents do not specify a correction for landing on a wet runway: the landing distance must be	20 %	15 %	Э %	10 %		1		
1792	32	increased by:					0	1	0	0
		(For this question use annex 032-6588A or Flight planning Manual SEP 1 Figure 2.4)	908 NM	902 NM	875 NM	860 NM				Π
		Using the Range Profile Diagramm, for the single engine								
		aeroplane, determine the range, with 45 minutes reserve, in						1		
		the following conditions:						1		
		Given :								
		0 A T								
1793	32						0	1	0	0

		(For this question use annex 032-6587A or Flight planning Manual SEP 1 Figure 2.4) Using the Range Profile Diagramm, for the single engine aeroplane, determine the range, with 45 minutes reserve, in the following conditions:	851 NM	911 NM	865 NM	739 NM				
		Ciuca -								
4 70 4		0.A.T.: ISA +16°C								
1794	32	(For this question use annex 032-6586A or Flight planning	136 kt and	131 kt and	125 kt and	134 kt and	0	0	1	
		Manual SEP 1 Figure 2.3 Table 2.3.1)	56,9 lbs/hr	56,9 lbs/hr	55,7 lbs/hr	55,7 lbs/hr				
		Using the Power Setting Table, for the single engine aeroplane, determine the cruise TAS and fuel flow (lbs/hr) with full throttle and cruise lean mixture in the following conditions:								
		Given :								
1795	32	OAT: 3°C					0	0	0	1
		(For this question use annex 032-6585A or Flight planning Manual SEP 1 Figure 2.2 Table 2.2.3)	160 kt and 69,3 lbs/hr	158 kt and 74,4 lbs/hr	160 kt and 71,1 lbs/hr	159 kt and 71,7 lbs/hr				Π
		Using the Power Setting Table, for the single engine aeroplane, determine the cruise TAS and fuel flow (lbs/hr) with full throttle and cruise lean mixture in the following conditions:								
1796	32	Given:					1	0	0	0
		(For this question use annex 032-6584A or Flight Planning Manual SEP 1 Figure 2.2 Table 2.2.3)	22,4 in.Hg and 69,3	23,0 in.Hg and 69,0	22,4 in.Hg and 71,1	22,4 in.Hgand 73,8 lbs/hr				Π
		Using the Power Setting Table, for the single engine aeroplane, determine the manifold pressure and fuel flow (lbs/hr) with full throttle and cruise lean mixture in the following conditions:	lbs/hr	lbs/hr	lbs/hr					
		Given:								
1797	32	OAT: 13°C					1	0	0	0
1798	32	If the take-off mass of an aeroplane is brake energy limited a higher uphill slope would	have no effect on the maximum mass for take-off.	decrease the required take-off distance.	increase the maximum mass for take-off.	decrease the maximum mass for take-off.	0	0	1	0
1700		(For this question use annex 032-6582A or Performance Manual SEP 1 Figure 2.3)	16 665 ft	18 909 ft	18 073 ft	20 109 ft		-		
		Using the climb performance chart, for the single engine aeroplane, determine the ground distance to reach a height of 1500 ft above the reference zero in the following conditions:								
		Given :								
		O.A.T at Take-off: ISA								
1799	32	Airport pressure altitude: 5000 ft	the second states			the mark to the	1	0	0	0
1000		for maximum range corresponds with:	intersection of the parasite drag curve and the induced	the point of contact of the tangent from the origin to the parasite drag curve.	the point of contact of the tangent from the origin to the induced drag curve.	the point of contact of the tangent from the origin to the drag curve.				
1900	<u>عد</u>		arag curve.				10	0	ľ	Γ

		(For this question use annex 032-6580A or Performance Manual SEP 1 Figure 2.2)	2375 ft	1900 ft	1600 ft	2000 ft				
		With regard to the take off performance chart for the single engine aeroplane determine the take off distance over a 50 ft obstacle height.								
		Given :								
		O.A.T : 30°C								
		Pressure Altitude: 1000 ft								
		Aeroplane Mass: 2950 lbs								
1801	32	Tailwind component: 5 kt					1	0	0	0
		(For this question use annex 032-6579A or Performance Manual SEP 1 Figure 2.3)	1290 ft/min	1370 ft/min	1210 ft/min	1150 ft/min				
		With regard to the climb performance chart for the single engine aeroplane determine the climb speed (ft/min).								
		Given :								
		0.A.T : ISA + 15°C								
1 000	22	Pressure Altitude: 0 ft							0	
1002	52	(For this question use annex 032-6578A or Performance	approximately	approximately	approximately	approximately :	ľ		0	-
		Manual SEP 1 Figure 2.2)	: 4200 ft	: 5040 ft	: 3960 ft	3680 ft				
		With regard to the take off performance chart for the single engine aeroplane determine the take off distance to a height of 50 ft.								
		Given :								
		O.A.T: 38℃								
		Pressure Altitude: 4000 ft								
1803	32	Aeroplane Mass: 3400 lbs					0	0	1	0
		(For this question use annex 032-6577A or Performance	65 and 75	71 and 82	73 and 84	68 and 78 KIAS				
		Manual SEP 1 Figure 2.1)	KIAS	KIAS	KIAS					
		With regard to the take off performance chart for the single engine aeroplane determine the take off speed for (1) rotation and (2) at a height of 50 ft.								
		Given :								
		O.A.T : ISA+10°C								
		Pressure Altitude: 5000 ft								
1804	32	Aeroplane mass: 3400 lbs	40.011	40.011	44514	40514	0	1	0	0
		At a given mass, the stalling speed of a twin engine aircraft is 100 kt in the landing configuration. The minimum speed a pilot must maintain in short final is:	120 Kt	130 Kt	115 Kt	125 Kt				
1805	32						0	1	0	0
		(For this question use annex 032-11661A or Performance Manual SEP 1 Figure 2.1)	440 m	615 m	525 m	415 m				
		An extract of the flight manual of a single engine propeller aircraft is reproduced in annex.								
		Airport characteristics: hard, dry and zero slope run way								
		Actual conditions are:								
		pressure altitude: 1 500 ft								
1000		outside tempereature: +18°C								
1806	32		1	1			0	0	1	0

		Is there any difference between the vertical speed versus forward speed curves for two identical aeroplanes having different masses? (assume zero thrust and wind)	Yes, the difference is that for a given angle of attack both the vertical and forward speeds of the heavier aeroplane will be larger.	No difference.	Yes, the difference is that the heavier aeroplane will always glide a greater distance.	Yes, the difference is that the lighter aeroplane will always glide a greater distance.				
1807	32	The maximum rate of climb that can be maintained at the	500 ft/min	100 ft/min	0 ft/min	125 ft/min	1	0	0	0
1808	32	absolute ceiling is: During climb with all engines, the altitude where the rate of	Maximum	Service	Absolute	Thrust ceiling	0	0	1	0
1809	32	climb reduces to 100 ft/min is called:	transfer ceiling	ceiling	ceiling	Ĵ	0	1	0	0
		(For this question use annex 032-6583A or Performance Manual SEP 1 Figure 2.3)	1030 ft/min and 8,4%	1170 ft/min and 9,9%	1310 ft/min and 11,3%	1120 ft/min and 9,3%				
		Using the climb performance chart, for the single engine aeroplane, determine the rate of climb and the gradient of climb in the following conditions:								
		Given :								
1810	32	O.A.T at Take-off: ISA					0	0	0	1
1 01 1	33	Which of the equations below defines specific range (SR)?	SR = Groundspee d/Total Fuel Flow	SR = True Airspeed/Tot al Fuel Flow	SR = Indicated Airspeed/Tot al Fuel Flow	SR = Mach Number/Total Fuel Flow		1	0	
1912	32	At a constant Mach number the thrust and the fuel flow of a jet engine	increase with increasing altitude.	are independent of outside air temperature (OAT).	increase in proportion to the ambient pressure at constant temperature.	decrease in proportion to the ambient pressure at constant temperature.		0		1
1012	52	The thrust of a jet engine at constant RPM	is inve <i>r</i> sely	increases in	do es not	is independent				H
1813	32		proportional to the airspeed.	proportion to the airspeed.	change with changing altitude.	of the airspeed.	0	1	0	0
1.81/	32	The intersections of the thrust available and the drag curve are the operating points of the aeroplane	in descent with constant IAS.	in accelerated l evel flight.	in unaccelerate d climb.	in unaccelerated level flight.	0	0	0	1
1014	02	At speeds below minimum drag	the aeroplane ca n be controlled only in level	a lower speed requir es a higher thrust.	a higher speed requires a higher thrust.	the aeroplane can not be controlled manually.			0	
1815	32	A lower airspeed at constant mass and altitude requires	flight. a higher	less thrust	more thrust	more thrust	0		0	
1816	32		coefficient of lift.	and a lower coefficient of lift.	and a lower coefficient of lift.	and a lower coefficient of drag.		0	0	0
		A higher altitude at constant mass and Mach number	a higher	a lower	a lower	a lower angle	ļ.	Ĺ	Ē	Ħ
1817	32		attack.	lift.	drag.		1	0	0	0
1.810	30	The coefficient of lift can be increased either by flap extension or by	increasing the angle of attack.	increasing the TAS.	decreasing the 'nose-up' elevator trim	increasing the CAS.	1	0	0	
1010	52			L	secung.		Γ_{τ}	Ľ	L0	Ľ

1819	32		a bwei airspeed requires less thrust because drag is decreased.	airspeed requires more thrust.	required is independent of the airspeed.	reduction results in an acceleration of the aeroplane.	0	1	0	0
1820	32	"Maxımum enduran ce"	is the same as maximum specific range with wind correction.	can be flown in a steady climb only.	can be reached with the 'best rate of climb' speed in level flight.	is achieved in unaccelerated level flight with minimum fuel consumption.	0	0	0	1
1821	32	What is the advantage of balancing V1, even in the event of a climb limited take-off?	The safety margin with respect to the run way length is greatest.	The take-off distance required with one engine out at V1 is the shortest.	The accelerate stop distance requ ired is the short est.	The climb limited take-off mass is the highest.	1	0	0	0
		Which of the following statements is correct?	The accelerate stop distance requ ired is independant of the runway condition.	The take-off distance with one engine out is independant of the wind component.	The climb limited take-off mass is independant of the wind component.	The performance limited take-off mass is independant of the wind component.				
1822	32	The drift down requirements are based on:	the landing mass limit at the alternate.	the obstacle clearance during a descent to the new cruising altitude if an engine has failed.	the actual engine thrust output at the altitude of engine failure.	the maximum flight path gradient during the descent.	0	0	1	0
1823	32	The load factor in a turn in level flight with constant TAS depends on	the radius of the tum and the weight of the aeroplane.	the bank angle only.	the radius of the tum and the bank angle.	the true airspeed and the bank angle.	0	1	0	0
1825	32	Long range cruise is selected as	the speed for best economy.	the climbing cruise with one or two engines inoperative.	specific range with tailwind.	the higher speed to achieve 99% of maximum specific range in zero wind.	0	0	0	1
1826	32	The optimum altitude	is the altitude at which the specific range reaches its minimum.	is the altitude up to which cabin pressure of 8 000 ft can be maintained.	increases as mass decreases and is the altitude at which the specific range reaches its maximum.	de creases as mass de creases.	0	0	1	0
1827	30	To achieve the maximum range over ground with headwind the airspeed should be	reduced to the gust penetration speed.	higher compared to the speed for maximum range cruise with no wind.	equal to the speed for maximum range cruise with no wind.	lower compared to the speed for maximum range cruise with no wind.	0	1	0	
1021	<u>~</u>		l				1	Ľ	5	Ľ

Image: searched and the point at maximum endurance which VLOF point at maximum endurance could stam. could at maximum endurance could at maximum endura			The take-off run is	the distance of the point of brake release to a point equidistant between the point at	the horizontal distance along the take-off path from the start of the take-off to a point	1.5 times the distance from the point of brake release to a point equidistant between the	1.15 times the distance from the point of brake release to the point at which VLOF is reached assuming a				
1222 32 During the flight preparation a pilot makes a mistake by selecting a V1 greater than that required. Which problem wil occur when the engine fails at a speed immediatly above the correct value of V1? The one engine out take-off distance required may exceed the take-off distance available. It may lead to The stop distance required will exceed the stop distance available. It applies the take-off distance available. It applies take tapplies t				which VLOF is reached and the point at which the aeroplane attains a height of 50 ft above the runway assuming a failure of the critical engine at V1.	equidistant between the point at which VLOF is reached and the point at which the aeroplane is 35 ft above the take-off surface.	point at which VLOF is reached and the point at which the aeroplane attains a height of 35 ft above the runway with all engines operative.	failure of the critical engine at V1.				
above the correct value of V1? distance required distance available. performance required distance available. exceed the stop distance available. exceed the stop distance available. exceed the stop distance available. i	1828	32	During the flight preparation a pilot makes a mistake by selecting a V1 greater than that required. Which problem will occur when the engine fails at a speed immediatly	The one engine out take-off	V2 may be too high so that climb	It may lead to over-rotation.	The stop distance required will	0	1	0	0
Which combination of circumstances or conditions would most likely lead to a tyre speed limited take-off? A high rumway alevation and tail wind. A bigh rumway alevation and head wind. A bw runway elevation and a head wind. A bw runway elevation a head wind. A bw runway a beelting. 1830 32 VX is The speed for maximum specific range. X by specific range. S a bit with specific range. S a bit with specific range. N a very significantly significantly significantly significantly X a very sig	1829	32	above the correct value of V1?	distance required may exceed the take-off distance available.	performance decreases.		exceed the stop distance available.	0	0	0	1
Image: Note: N	1830	32	Which combination of circumstances or conditions would most likely lead to a tyre speed limited take-off?	A high runway elevation and tail wind.	A low runway elevation and a cross wind.	A high runway elevation and a head wind.	A low runway elevation and a head wind.	1	0	0	0
1831 32 VX is VX is VX is the speed for best angle of flight path. the speed for best angle of climb. the speed for best specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower specific range.	1 0 2 1	32	During the flight preparation the climb limited take-off mass (TOM) is found to be much greater than the field length limited TOM using 5° flap. In what way can the performance limited TOM be increased? There are no limiting obstacles.	By selecting a higher flap setting.	By selecting a higher V2.	By selecting a lower V2.	By selecting a lower flap setting.	1	0	0	0
1832 32 Image: Section of the speed for maximum endurance is the lower speed to achieve 99% of maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. is always lower than the speed for maximum specific range. </td <td>4 000</td> <td>02</td> <td>VX is</td> <td>the speed for best angle of flight path.</td> <td>the speed for bestangle of climb.</td> <td>the speed for bestrate of climb.</td> <td>the speed for best specific range.</td> <td></td> <td></td> <td></td> <td></td>	4 000	02	VX is	the speed for best angle of flight path.	the speed for bestangle of climb.	the speed for bestrate of climb.	the speed for best specific range.				
A runway is contaminated by a 0,5 cm layer of wet snow. The take-off is nevertheless authorized by a light-twin's flight manual. 1834 32 The take-off distance in relation to a dry runway will be:	1833	32	The speed for maximum endurance	is the lower speed to achieve 99% of maximum specific range.	can either be higher or lower than the speed for maximum specific range.	is always higher than the speed for maximum specific range.	is always lower than the speed for maximum specific range.	0	0	0	1
	1824	30	A runway is contaminated by a 0,5 cm layer of wet snow. The take-off is nevertheless authorized by a light-twin's flight manual. The take-off distance in relation to a drv runway will be:	increased	un cha nge d	decreased	very significantly decreased	1	0	0	

1845	32	gradient corresponds to a rate of climb of approximately:					0	1	0	0
1844	32	A climb gradient required is 3,3%. For an aircraft	or of the creasing of the crea	siigntly with increasing airspeed. 330 ft/min	of the airspeed. 3 300 ft/min	increasing airspeed. 3, 30 m/s	0	1	0	0
1843	32	The length of a clearway may be included in: At constant thrust and constant altitude the fuel flow of a jet	the distance to reach V1.	the take-off distance available.	the accelerate-st op distance available.	the take-off run available. decreases	0	1	0	0
1842	32	Which statement related to a take-off from a wet run way is correct?	A reduction of screen height is allowed in order to reduce weight penalties	The use of a reduced Vr is sufficient to maitain the same safety margins as for a dry runway	In case of a reverser inoperative the wet runway performance information can still be used	Screenheight reduction can not be applied be cause of reduction in ob stacle clearance.	1	0	0	0
1841	32	The approach climb requirement has been established to ensure:	minimum climb gradient in case of a go-around with one engine inoperative.	obstacle clearance in the approach are a.	manoeuvrabili ty in case of landing with one engine inoperative.	manoeuvrability during approach with full flaps and gear down, all engines operating.	1	0	0	0
1839	32	Which of the following distances will increase if you increase V1?	Take-off run	Accelerate Stop Distance	Take-off distance	All Engine Take-off distance	0	1	0	0
1838	32	The take-off performance requirements for transport category aeroplanes are based upon:	all engines operating.	only one engine operating.	failure of critical engine.	failure of critical engine or all engines operating which ever gives the largest take off distance.	0	0	0	1
1836 1837	32 32	The drift down procedure specifies requirements concerning the:	engine power at the altitude at which engine failure occurs	climb gradient duri ng the descent to the net level-off altitude	weight during landing at the alternate	braking. obstacle clearance during descent to the net level-off altitude	0	1	0	0
		Minimum control speed on ground, VMCG, is based on directional control being maintained by:	nosewheel steeringonly.	primary aerodynamic control only.	primary aerodynamic control and nosewheel.	primary aerodynamic control, nosewheel steering and differential				
1835	32	 segment after the take-off of a jet aeroplane is defined by the following parameters: 1 Gear up 2 Gear down 3 Wing flaps retracted 4 Wing flaps in take-off position 5 N engines at the take-off thrust 6 (N-1) engines at the take-off thrust 7 Speed over the path equal to V2 + 10 kt 	1, 5, 8, 10	1, 4, 0, 9	2, 3, 6, 9	1, 4, 3, 10	0	1	0	0

1846	32	Take-off performance data, for the ambient conditions, show the following limitations with flap 10° selected: - runway limit: 5 270 kg - obstacle limit: 4 630 kg Estimated take-off mass is 5 000kg.	5°, the obstacle limit is increased but the runway limit decreases	5°, both limitations are increased	20°, the obstacle limit is increased but the runway limit decreases	20°, both limitations are increased	1	0	0	0
1047	22	Following a take-off, limited by the 50 ft screen height, a light twin climbs on a gradient of 5%. It will clear a 160 m obstacle in relation to the runway (horizontally), situated at 5 000 m from the 50 ft point with an obstacle clearance margin of:	it will not clear the obstacle	105 m	90 m	75 m				
1847	32	Why are 'step climbs' used on long distance flights ?	Step climbs do not have any special purpose for jet aeroplanes; they are used for piston engine aerop lanes only.	To respect ATC flight level constraints.	To fly as close as possible to the optimum altitude as aeroplane mass reduces.	Step climbs are only justified if at the higher altitude less headwind or more tailwind can be expected.	0	0	1	0
1040	52	Which force compensates the weight in unaccelerated	the lift	the thrust	thedrag	the resultant			ľ	
1849	32	straight and level flight?				from lift and drag	1	0	0	0
1850	32	An aeroplane operating under the 180 minutes ETOPS rule may be up to :	90 minutes flying time from the first enroute airport and another 90 minutes from the second enroute airport in still air with one engine inoperative.	180 minutes flying time to a suitable airport in still air with one engine inoperative.	180 minutes flying time to a suitable airport under the prevailing weather condition with one engine inoperative.	180 minutes flying time from suitable airport in still air at a normal cruising speed	0	1	0	0
4.054	22	ETOPS flight is a twin engine jet aeroplane flight conducted over a route, where no suitable airport is within an area of	75 minutes flying time at the approved one engine out cruise speed.	60 minutes flying time in still air at the approved on e engine out cruise speed.	60 minutes flying time in still air at the normal cruising speed.	30 minutes flying time at the normal cruising speed.				
1852	32	(For this question use annex 032-3589A or Performance Manual MRJT 1 Figure 4.24) With regard to the drift down performance of the twin jet aeroplane, why does the curve representing 35 000 kg gross mass in the chart for drift down net profiles start at approximately 3 minutes at FL370?	All the curves start at the same point, which is situated outside the chart.	Because at this mass it takes about 3 minutes to decelerate to the optimum speed for drift down at the original cruising level.	Because at this mass the engines slow down at a slower rate after failure, there is still some thrust left during four minutes.	Due to higher TAS at this mass it takes more time to develop the optimal rate of descent, because of the inertia involved.	0	1	0	0

1853	32	(For this question use annex 032-3590A or Performance Manual MRJT 1 Figure 4.5) With regard to the take-off performance of a twin jet aeroplane, why does the take-off performance climb limit graph show a kink at 30°C, pressure altitude 0?	At higher temperatures the flat rated engines determines the climb limit mass.	At higher temperatures the VMBE determines the climb limit mass.	At lower temperatures one has to take the danger of icing into account.	The engines are pressure limited at lower temperat ure, at higher temperatures they are temperature limited.	1	0	0	0
1854	32	(For this question use annex 032-3591 A or Performance Manual MRJT 1 Figure 4.5) Consider the take-off performance for the twin jet aeroplane climb limit chart. Why has the wind been omitted from the chart?	There is a built-in safety measu re.	The climb limit performance s are taken relative to the air.	The effect of the wind must be taken from another chart.	There is no effect of the wind on the climb angle relative to the ground.	0	1	0	0
1855	32	In which of the flight conditions listed below is the thrust required (Tr) equal to the drag (D)?	In level flight with constant IAS	In acceleratedl evel flight	In a climb with constant IAS	In a descent with constant TAS	1	0	0	0
1856	32	How is V2 affected if T/O flaps 20° is chosen instead of T/O flaps 10°?	V2 has the same value in both cases.	V2 increases in proportion to the angle at which the flaps are set.	V2 has no connection with T/O flap setting, as it is a function of runway length only.	V2 decreases if not restricted by VMCA.		0	0	1
1050	32	Following a take-off determined by the 50ft (15m) screen height, a light twin climbs on a 10% over-the-ground climb gradient. It will clear a 900 m high obstacle in relation to the run way (horizontally), situated at 10000 m from the 50 ft clearing	115 m	100 m	85 m	It will not clear the obstacle				
1007	32	<pre>point with an obstacle clearance of: The take-off distance of an aircraft is 800m in standard atmosphere, no wind at 0 ft pressure-altitude. Using the following corrections : "± 20 m / 1 000 ft field elevation " "- 5 m / kt headwind " "+ 10 m / kt tail wind " "± 15 m / % runway slope "</pre>	810 m	970 m	890 m	870 m				
1858	32	"± 5 m / °C deviation from standard temperature " The take-off decision speed V1 is:	not less than V2min, the minimum take-off safety speed.	a chosen limit. If an engine failure is recognized after reaching V1 the take-off must be aborted.	sometimes greater than the rotation speed VR.	a chosen limit. If an engine failure is recognized before reaching V1 the take-off must be aborted.	0	0	0	0
		The flight manual of a light twin engine recommends two cruise power settings, 65 and 75 %. The 75% power setting in relation to the 65 % results in:	same speed and fuel-burn/dist ance, but an increase in the fuel-burn per hour.	an increase in speed, fuel consump tion and fuel-burn/dist ance.	same speed and an increase of the fuel-burn per hour and fuel-burn/dist ance.	an increase in speed and fuel-burn/dista nce, but an unchanged fuel-burn per hour.				
1860 1861	32 32	With an true airspeed of 194 kt and a vertical speed of 1 000 ft/min, the climb gradient is about :	3°	3%	5°	8%	0	1 0	0	0 0
1.001			I		I		<u> </u>	_ًــا	بّ	ل ت

		At a given altitude, when a turbojet aeroplane mass is	7.5%	10%	2.5%	5%				
		Increased by 5% - assuming the engines specific								
		is approximately increased by:								
1862	32						0	0	0	1
		For a turboprop powered aeroplane, a 2200 m long runway	1339 m.	1771 m.	1540 m.	1147 m.				
		at the destination aerodrome is expected to be "wet". The								
1863	32	and ing analing distance, should not exceed.					1	0	0	0
		During the certification flight testing of a twin engine turbojet	1547 m.	1720 m.	1779 m.	1978 m.				
		aeroplane, the real take-off distances are equal to:								
		- 1547 m with all engines running								
		- 1720 m with failure of critical engine at V1, with all other								
		unings remaining unchanged.								
1864	32	The take-off distance adopted for the certification file is:					0	0	1	0
		In relation to the net take-off flight path, the required 35 ft	based on	the height by	the height at	the minimum				
		vertical distance to clear all obstacles is	pressure	wnicn	is reduced to	vertical				
			annuaes.	andflap	maximum	between the				
				retraction	climb thrust.	lowest part of				
				should be		the aeroplane				
				completed.		andall				
						obstacles within the				
						obstacle				
						corridor.				
1865	32						0	0	0	1
		(For this question use annex 032-915A)	-1267 ft/min.	0 ft/min.	+3293 ft/	+1267 ft/min.				
		What is the maximum vertical speed of a three engine			min.					
		turbojet aeroplane with one engine inoperative (N-1) and a								
		mass of 75 000 kg?								
		Using the following: $g = 10 \text{ m/s}^2$								
1 866	32						0	0	0	1
1000	52	1 kt = 100 tt/min A rupway is contaminated with 0.5 cm of wet snow	increased	unchanged	reduced	substantially			0	-
				arrenarigea		decreased				
		The flight manual of a light twin nevertheless authorises a								
		landing in these conditions.								
1867	32	The landing distance will be, in relation to that for a dry					1	0	0	0
1007		The danger associated with low speed and/or high speed	can be	exists only	has to be	limits the	ŀ	Ŭ	-	Ť
		buffet	reduced by	above MMO.	considered	maneuvering				
			increasing		at take-off	load factor at				
1 000	22		the load		and landing.	high alt itudes.				1
1000	J2	An aircraft has two certified landing flans positions 25° and	an increased	a reduced	an increased	a reduced	H ⁰			H
		35°.	landing	landing	landing	landing				
			distance and	distance and	distance and	distance and				
		IT a pliot chooses 25° instead of 35°, the aircraft will have:	degraded	degraded	better	better .				
			go-around	go-around	go-around	go-around				
			penormance	penormance	penormance	penormance				
1869	32						0	0	1	0
		What will be the influence on the aeroplane performance if	It will	It will	It will	It will increase				
		aerodrome pressure altitude is increased?	increase the	increase the	decrease	the take-off				
			stop	distance.	distance.	available.				
			distance avai							
4 6			lable.				_			
1870	32) (Durssing to the) (Durssing to the			0	1	0	0
		which statement is correct?	VK MUST NOT	VK MUST NOT	VK MUST NOT	VK MUST NOT				
			1.1 VMCA	1.05 VMCA	1.05 VMCA	VMCA and not				
			1				1	1		
			and not less	and not less	and not less	less than 1.05				
			and not less than V1.	and not less than 1.1 V1.	and not less than V1.	less than 1.05 V1.				
1.871	22		and not less than V1.	and not less than 1.1 V1.	and not less than V1.	less than 1.05 V1.	0	0	1	0

		The pilot of a single engine aircraft has established the climb performance.	Improved	Unchanged	Unchanged, if a short	Degraded				
		'			field take-off					
1872	32	performance to be:			is adopted		0	0	0	1
		How is wind considered in the take-off performance data of	Since	Not more	Unfactored	Not more than	┢		╞	Η
		the Aeroplane Operations Manuals?	take-offs	than 50% of	headwind	80% headwind				
			with tailwind	a headwind	andtailwind	and not less				
			permitted	than 150%	are used	tailwind				
			only	of the						
			headwinds	tailwind.						
4 0 7 0			are					Ι.		
1873	32		considered.				0	1	0	0
		A higher pressure altitude at ISA temperature	decreases	decreases	increases the	has no influence on				
			length	distance.	take-off	theallowed				
			limited take-o		mass.	take-off mass.				
1874	32		ffmass.				1	0	0	0
		An aircraft has two certified landing flaps positions, 25° and	an increased	areduced	a reduced	an increased				
		35°.	landing	landing	landing	landing distance and				
		If a pilot chooses 35° instead of 25° , the aircraft will have:	better	degraded	better	degraded				
			go-around	go-around	go-around	go-around				
			performance	performance	performance	performance				
1075	20						 _		<u>_</u>	
10/5	<u>ح</u> د	The critical engine inconcrative	does not	decreases	increases the	increases the	\mathbb{H}^{0}	\vdash		H
		The shader orgino inoperative	affect the	the power	power	power				
			aeroplane	required	required and	required becau				
			performance	be cause of	decreases	se of the				
			since it is	thelower	the total	greater drag				
			independent	drag caused	drag due to	caused by the				
			plant.	windmilling	windmilling	engine and				
				engine.	engine.	the compensati				
						on for the yaw				
						effect.				
1876	32						0	0	0	1
10/0		The induced drag of an aeroplane at constant gross weight	VS1 (stalling	VMO	VA (design	VSO (stalling				H
		and altitude is highest at	speed in	(maximum	manoeuvring	speed in				
			clean	operating	speed)	landing				
			configuration	limit speed)		configuration)				
1877	32		,				0	0	0	1
		A higher outside air temperature (OAT)	increases the	increases the	decreases	decreases the	Γ			П
			field length	climb limited	the take-off	brake energy				
			limited	take-off	distance.	limited take-off				
1878	32		mass.	111055.		111855.	0	0	0	1
		The effect of a higher take-off flap setting up to the optimum	a decrease	an increase	an increase	a decrease of	F			Η
		is:	of both the	of both the	of the field	the field length				
			field length	field length	length	limited take-off				
			take-off	take-off	ff mass but a	increase of				
			mass and	mass and	decrease of	the climb				
			the climb	the climb	the climb	limited take-off				
			limited	limited	limited	mass.				
1 870	32		take-off	take-off	take-off		<u>۱</u>	<u>۱</u>	1	$\left \right $
10/9	52	The climb gradient of an aircraft after take off is 6% in	4.9 %	3.9 %	111ass. 4.3 %	4.7 %	\mathbf{F}			H
		standard atmosphere, no wind, at 0 ft pressure altitude.	,	_,	,	, .				
		Using the following corrections:								
		"+ 0.2 % / 1.000 ft field elevation"								
		"± 0,1 % / °C from standard temperature"								
		" - 1 % with wing anti-ice"								
		" - 0,5% with engine anti-ice"								
1880	32	The climb gradient after take-off from an airport situated at 1					0	1	0	0

		(For this question use annex 032-4732A or Performance Manual MRJT 1 Figure 4.24) With regard to the drift down performance of the twin jet aeroplane, what is meant by "equivalent gross weight at engine failure" ?	This gross weight accounts for the lower Mach number at higher temperatures	The increment accounts for the higher fuel flow at higher temperatures	The equivalent gross weight at engine failure is the actual gross weight corrected for OAT higher than ISA +10° C.	The increment represents fuel used before engine failure.				
1881	32					1.9%	0	0	1	0
1882	32	the approach climb requirement has been established so that the aeroplane will achieve:	minimum climb gradient in the event of a go-around with one engine inoperative.	obstacle clearance in the approach are a.	manoeuverab ility in the event of landing with one engine inoperative.	manoeuverabilit y during approach with full flaps and gear down, all engines operating.	1	0	0	0
1883	32	On a reciprocating engined aeroplane, with increasing altitude at constant gross mass, angle of attack and configuraton the drag	remains un changed but the the CAS increases.	increases at constant TAS.	decreases and the CAS decreases too because of the lower air density.	remains unchanged but the TAS increases.	0	0	0	1
		Which of the following factors favours the selection of a low flap setting for the take-off?	High field elevation, distant obstacles in the climb-out path, long runway and a high ambient temperature.	Low field elevation, close-in obstacles in the climb-out path, long runway and a high ambient temperature.	High field elevation, no obstacles in the climb-out path, low ambient temperature and short runway.	Low field elevation, no obstacles in the climb-out path, short runway and a low ambient temperature.				
1884	32						1	0	0	0
1885	32	Which of the following sets of factors will increase the climb-limited TOM?	Low flap setting, high PA, high OAT.	Low flap setting, high PA, low OAT.	Low flap setting, low PA, low OAT.	High flap setting, low PA, low OAT.	0	0	1	0
1886	32	If there is a tail wind, the climb limited TOM will:	increase.	decrease.	increase in the flaps extended case.	not be affected.	0	0	0	1
1887	32	Other factors remaining constant and not limiting, how does increasing pressure altitude affect allowable take-off mass?	There is no effect on allowable take-off mass.	Allowable take-off mass remain s uninfluenced up to 5000 ft PA	Allowable take-off mass decrea ses.	Allowable take-off mass increases.	0	0	1	0
1007	20	In which of the following distances can the length of a stopway be included?	In the one-engine failure case, take-off distance.	In the all-engine take-off distance.	In the take-off run available.	In the accelerate stop distance available.				
1000	32	If the antiskid system is inoperative, which of the following statements is true?	The accelerate stop distance incr eases.	The accelerate stop distance decr eases.	It has no effect on the accelerate stop distance.	Take-off with antiskid inoperative is not permitted.				
1889	32						1	0	0	0

1890	32	The maximum operating altitude for a certain aeroplane with a pressurised cabin	is only certified for four-engine aeroplanes.	Is the highest pressure altitude certified for normal operation.	is dependent on aerodynamic ceiling.	is dependent on the OAT.	0	1	0	0
		The pilot of a light twin engine aircraft has calculated a 4 000 m service ceiling, based on the forecast general conditions for the flight and a take-off mass of 3 250 kg. If the take-off mass is 3 000 kg, the service ceiling will be:	less than 4 000 m.	un change d, equal to 4 000 m.	only a new performance analysis will determine if the service ceiling is higher or lower than 4 000 m.	higher than 4 000 m.				
1891	32	(For this question use anney 032-4733 A or Performance	2600 m	27.00 m	2900 m	31.00 m	0	0	0	1
		Manual MRJT 1 Figure 4.28) What is the minimum field length required for the worst wind situation, landing a twin jet aeroplane with the anti-skid inoperative?	2000 m.	2700 m.	2300 m.	5100 11.				
		Elevation: 2000 ft								
		QNH: 1013 hPa								
		Landing mass: 50 000 kg								
1892	32	Flaps: as required for minimum landing distance					0	0	0	1
		What will be the effect on an aeroplane's performance if aerodrome pressure altitude is decreased?	It will increase the take-off distance required.	It will increase the take-off ground run.	It will increase the accelerate stop distance.	It will decrease the take-off distance required.				
1893	32						0	0	0	1
		The absolute celling	at which the best climb gradient attainable is 5%	at which the ae roplane reaches a maximum rate of climb of 100 ft/min.	at which the rate of climb theoretically is zero.	can be reached only with minimim ste ady flight spe ed				
1894	32	The induced dreg of an exception	io	inorogogo	do oro opo o	do oro oco o with	0	0	1	0
1895	32		ind ependent of the airspeed.	with increasing airspeed.	with increasing airspeed.	increasing gross weight.	0	0	1	0
1000	20	Can the length of a stopway be added to the runway length to determine the take-off distance available ?	Yes, but the stopway must have the same width as the runway.	No.	No, unless its centerline is on the extended centerline of the runway.	Yes, but the stopway must be able to carry the weight of the aeroplane.				
1896	32	May anti-skid be considered to determine the take-off and	Only for	Yes.	No.	Only for			0	\vdash
1897	32	landing data?	landing.	the take off	the take off	take-off.	0	1	0	0
1898	32		must be rejected.	may be continued if a clearway is available.	should only be rejected if a stop way is available.	to be continued unless V1 is less than the balanced V1.	1	0	0	0
		In case of an engine failure which is recognized at or above V1	the take-off must be rejected if the speed is still below VLOF.	a height of 50 ft must be reached within the take-off distance	the take-off should be rejected if the speed is still below VR.	the take-off must be continued.				
1899	32						0	0	0	1

		The take-off distance available is	the total runway length, without clearway even if this one exists.	the length of the take-off run available plus the length of the clearway available.	the runway length minus stopway.	the runway length plus half of the clearway.				
1900	32	The result of a high or flop acting up to the aptimum at	a high or \/1	a langer	o oborto r	on increased	0	1	0	0
1901	32	take-off is	a nigner v1.	a longer take-off run.	ground roll.	acceleration.	0	0	1	0
1902	32	Reduced take-off thrust	has the benefit of improving engine life.	can be used if the actual take-off mass is higher than the performance limited take-off mass.	is not recommende d at very low temperatures (OAT).	can be used if the headwind component during take-off is at least 10 kt.	1	0	0	0
1903	32	The speed for best rate of climb is called	VY.	VX.	V2.	VO.	1	0	0	0
		The aerodynamic ceiling	is the altitude at which the aeroplane reaches 50 ft/min.	is the altitude at which the speeds for low speed buffet and for high speed buffet are the same.	depends up on thrust setting and increase with increasi ng thrust.	is the altitude at which the best rate of climb theoretically is zero.				
1904	32						0	1	0	0
1905	32	Which statement is correct?	VR is the speed at which rotation should be initiated.	VR is the lowest climb speed after engine failure.	In case of engine failure below VR the take-off should be aborted.	VR is the lowest speed for directional control in case of engine failure.	1	0	0	0
		Given: VS=Stalling speed VMCA= Air minimum control speed VMU= Minimum unstick speed (disregarding engine failure) V1= take-off decision speed	VS <vmca< V2 min</vmca< 	VR< VMCA< VLOF	VMU< = VMCA< V1	V2min< VMCA> VMU				
1906	32	VR= Rotation speed					1	0	0	0
1907	32	Required runway length at destination airport for turboprop aeroplanes	is less then at an altemate airport.	is more than at an altemate airport.	is 60% longer than at an alternate airport.	is the same as at an altemate airport.	0	0	0	1
1908	32	Which of the following are to be taken into account for the runway in use for take-off?	Airport elevation, runway slope, outside air temperature, pressure altitude and wind components.	Airport elevation, runway slope, standard temperature, standard pressure and wind components.	Airport elevation, runway slope, standard temperature, pressure altitude and wind components.	Airport elevation, runway slope, outside air temperature, standard pressure and wind components.	1	0	0	0
		Which of the following will decrease V1?	Increased take-off mass	In operative flight management	Increased outside air temperature	Inoperative anti-skid.				
1909	32			system.			0	0	0	1
	_									_

1910	32	Which of the following is true with regard to VMCA (air minimum control speed)?	The aeroplane will not gather the minimum required climb gradient	VMCA only applies to four-engine aeroplanes	Straight flight can not be maintained below VMCA, when the critical engine has failed.	The aeroplane is uncontrollable below VMCA		0	1	0
1910	32	During take-off the third segment begins:	when acceleration starts from VLOF to V2.	when flap retraction is completed.	when acceleration to flap retraction speed is	when landing gear is fully retracted.	0	0	1	0
1911	32				started.		0	0	1	0
1912	32	What margin above the stall speed is provided by the landing reference speed VREF?	1,10 VSO	VMCA x 1,2	1,30 VSO	1,05 V SO	0	0	1	0
1013	32	How does runway slope affect allowable take-off mass, assuming other factors remain constant and not limiting?	Allowable take-off mass is not affected by runway	A downhill slope decreases allowable take-off mass	A downhill slope increases allowable take-off mass	An uphill slope increases take-off mass.	0	0	1	0
1914	32	Provided all other parameters stay constant. Which of the following alternatives will decrease the take-off ground run?	Increased pressure altitude, increased outside air temperature, increased take-off mass.	Increased outside air temperature, decreased pressure altitude, decreased flap setting.	Decreased take-off mass, increased pressure altitude, increased temperature.	Decreased take-off mass, increased density, increased flap setting.	0	0	0	1
		The required Take-off Distance (TOD) and the field length limited Take-off Mass (TOM) are different for the zero flap case and take-off position flap case. What is the result of flap setting in take-off position compared to zero flap position?	Decreased TOD required and decreased field length limited TOM.	Decreased TOD required and increased field length limited TOM.	In creased TOD required and de creased field length limited TOM.	Increased TOD required and increased field length limited TOM.				
1915	32						0	1	0	0
1916	32	The second segment begins	when flaps are selected up.	when acceleration starts from V2 to the speed for flap retraction.	when landing gear is fully retracted.	when flap retraction begins.	0	0	1	0
		Which one of the following is not affected by a tail wind?	the field limited take-off	the obstacle limited take-off	the take-off run.	the climb limited take-off mass.				
1917	32	Field length is balanced when	mass. take-off distance equals accelerate-st op distance.	mass. calculated V2 is less than 110% VMCA and V1, VR, VMCG.	all engine acceleration to V1 and braking distance for rejected take-off are equal.	one engine acceleration from V1 to VLOF plus flare distance between VLOF and 35 feet are equal.	0	0	0	0
1310	52	A jet aeroplane is climbing at a constant IAS and maximum	Reduce /	Reduce /	Remain	Remain	+			H
1919	32	climb thrust, how will the climb angle / the pitch angle change?	decrease.	remain constant.	constant/ decrease.	constant / become larger.	1	0	0	0

		Which of the following statements is correct ?	If a clearway or a stopway is used, the liftoff point must be attainable at least at the end of the permanent runway surface.	A stopway means an area beyond the take-off runway, able to support the aeroplan e during an aborted take-off.	An underrun is an area beyond the runway end which can be used for an aborted take-off.	A clearway is an area beyond the runway which can be used for an abort ed take-off.					
1920	32						0	1	0	0	
1021	22	For take-off obstacle clearance calculations, obstacles in the first segment may be avoided	by banking not more than 15° between 50 ft and 400 ft above the runway elevation.	by banking as much as needed if aeroplane is more than 50 ft above runway elevation.	only by using standard turns.	by standard tums - but only after passing 1500 ft.	1				
		Which of the following is true according to JAA regulations for turbopropeller powered aeroplanes not performing a steep approach?	Maximum Take-off Run is 0,5 x runway.	Maximum use of clearway is 1,5 x run way.	Maximum Landing Distance at the destination aerodrome and at any altemate aerodrome is 0,7 x LDA (Landing Distance Available).	Maximum Landing Distance at destination is 0,95 x LDA (Landing Distance Available).					
1922	32						0	0	1	0	
1923	32	The net flight path climb gradient after take-off compared to the gross climb gradient is:	smaller.	larger.	equal.	depends on type of aircraft.	1	0	0	0	
1024	30	The lowest take-off safety speed (V2 min) is:	1.20 Vs for all turboprop powered aeroplanes.	1.15 Vs for four-engine turboprop aeroplanes and 1.20 Vs for two or three-engine turboprop aeroplanes.	1.20 Vs for all turbojet ae roplanes.	1.15 Vs for all turbojet aeroplanes.	0	1	0		
1925	32	(For this question use annex 032-1562A or Performance Manual MRJT 1 Figure 4.4) For a twin engine turbojet aeroplane two take-off flap settings (5° and 15°) are certified. Given: Field length avalaible= 2400 m	52 000 kg	56 000 kg	55 000 kg	70 000 kg	0	1	0	0	
1926	32	An airport has a 3000 metres long runway, and a 2000 metres clearway at each end of that runway. For the calculation of the maximum allowed take-off mass, the take-off distance available cannot be greater than:	4500 metres.	6000 metres.	4000 metres.	5000 metres.	1	0	0	0	

1927	32	 During certification test flights for a turbojet aeropiane, the actual measured take-off runs from brake release to a point equidistant between the point at which VLOF is reached and the point at which the aeropiane is 35 feet above the take-off surface are: 1747 m, all engines operating 1950 m, with the critical engine failure recognized at V1, the other factors remaining unchanged. Considering both possibilities to determine the take-off run (TOR). What is the correct distance? 	2096 m.	1950 m.	2009 m.	2243 m.	0	0	1	0
		Which of the following statements is correct?	When determining the obstacle clearance during drift down, fuel dumping may be taken into account.	The drift down regulations require a minimum descent angle after an engine failure at cruising altitude.	The drift down procedure requires a minimum obstacle clearance of 35 ft.	An engine failure at high cruising altitude will always result in a drift down, because it is not permitted to fly the same altitude as with all engines operating.				
1928	32	How is VMCA influenced by increasing pressure altitude?	VMCA	VMCA is not	VMCA	VMCA	1	0	0	0
1 0 2 0	32		increases with increasing pressure altitude.	affected by pressure altitude.	decreases with increasing pressure altitude.	increases with pressure altitude higher than 4000 ft.				0
1929	32	Regarding the obstacle limited take-off mass, which of the	The obstacle	The	A take-off in	Wind speed				
		following statements is correct?	can never be lower than the climb limited take-off mass.	bank angle which can be used is 10°.	of an obstacle is also permitted in tail wind condition.	when calculating this particular mass.				
1930	32	For jet aeroplanes which of the following statements is	The required	When	In any case	An anti-skid	0	0	1	0
1931	32	correct?	landing field length is the distance from 35 ft to the full stop point.	determining the maximum all owable landing mass at destination, 60% of the available distance is taken in to account, if the run way is expected to be dry.	runway slope is one of the factors taken into account when determining the required landing field length.	system malfunction has no effect on the required landin g field length.	0	1	0	0
		Which statement is correct?	The performance	The climb limited	The climb limited	The climb limited take-off			ľ	Π
1932	32		limited take-off mass is the highest of: field length limited take-off mass climb limited take-off mass obstacle limited	take-off mass will increase if the headwind co mponent increases.	take-off mass increas es when a larger take-off flap setting is used.	mass depends on pressure altitude and outer air temperature	0	0	0	
	· -			I		1	Ľ	Ľ	Ľ	L .

		Which of the following factors determines the maximum	Aerodynamic	Theoretical	Service	Economy.				
1933	32	ingritaintude in the Burlet Onset Boundary graph?	5.	cening.	cenng.		1	0	0	0
1934	32	Maximum endurance for a piston engined ae roplane is achieved at:	The speed for maximum lift coefficient.	The speed for minimum drag.	The speed that corresponds to the speed for maximum cli mb angle.	The speed that approximately corresponds to the maximum rate of climb speed.	0	0	0	1
1001	-	The pilot of a jet aeroplane wants to use a minimum amount	Maximum	Holding.	Long range.	Maximum		-	-	
1935	32	of fuel between two airfields. Which flight procedure should the pilot fly?	en du rance.			range.	0	0	0	1
1936	32	Before take-off the temperature of the wheel brakes should be checked. For what reason?	To ensure that the brake wear is not excessive.	To ensure that the wheels have warmed up evenly.	To ensure that the thermal blow-out plugs are not melted.	Because overheated brakes will not perform adequately in the event of a rejected take off	0	0	0	1
1000		The stopway is an area which allows an increase only in :	the take-off	the take-off	the landing	the	Ť	Ū	-	ŀ
1937	32		run available.	distance available.	distance available.	accelerate-sto p distance available.	0	0	0	1
1938	32	Which is the correct sequence of speeds during take-off?	V1, VMCG, VR, V2.	V1, VR, VMCG, V2.	V1, VR, V2, VMCA.	VMCG, V1, VR, V2.	0	0	0	1
4.00.0		A jet aeroplane is climbing with constant IAS. Which operational speed limit is most likely to be reached?	The Minimum con trol speed air.	The Mach limit for the Mach trim system.	The Maximum operating Mach	The Stalling speed.				
1939	32	A jet a groplane descends with constant Mach number	Never	High Speed	number. Maximum	Maximum	0	0	1	0
1940	32	Which of the following speed limits is most likely to be exceeded first?	Exceed Spee	Buffet Limit	Operational Mach Number	Operating Speed	0	0	0	1
1941	32	Maximum and minimum values of V1 are limited by :	VR and VMCG	V2 and VMCA	VR and VMCA	V2 and VMCG	1	0	0	0
1942	32	Which statement, in relation to the climb limited take-off mass of a jet aeroplane, is correct?	The climb limited take-off mass decrea ses with increasing OAT.	The climb limited take-off mass is determined at the speed for best rate of climb.	50% of a head wind is taken into account when determining the climb limited take-off mass.	On high elevation airports equipped with long runways the aeroplane will always be climb limited.	1	0	0	0
1943	32	The minimum value of V2 must exceed "air minimum control speed" by:	15%	20%	30%	10%	0	0	0	1
1044	20	Which state ment regarding V1 is correct?	When determining the V1, reverse thrust is only allowed to be taken into account on the remaining symmetric engines.	The V1 correction for up-slope is negative.	V1 is not allowed to be greater than VR.	V1 is not allowed to be greater than VMCG.			4	
1944	32		1	1	1		10	10	11	UΙ

1945	32	When an aircraft takes off with the mass limited by the TODA: For a take-off from a contaminated runway, which of the following statements is correct?	the actual take-off mass equals the field length limited take-o ff mass. The greater the depth of contamination	the distance from brake release to V1 will be equal to the distance from V1 to the 35 feet point. Dry snow is not considered	the "balanced tak e-off distance" equals 115% of the "all engine take-off distance". A slush covered runway must	the end of the runway will be cleared by 35 feet following an engine failure at V1. The performance data for	1	0	0	0
4040	20		at constant take-off mass, the more V1 has to be decreased to compensat e for decreasing friction.	to affect the take-off performance.	be cleared before take-off, even if the performance data for contaminated run way is available.	take-off must be determined in general by means of calculation, only a few values are verified by flight tests.			0	
1946	32	To minimize the risk of hydroplaning during landing the pilot should:	use maximum rev erse thrust, and should	use normal landing-, braking- and reverse	postpone the landing until the risk of hydroplaning	make a "positive" landing and apply maximum	0	0	0	
1947	32		below the hydroplaning speed.		exists.	reverse thrust and brakes as quickly as possible.	0	0	0	1
		What is the advantage of a balanced field length condition ?	For a balanced field length the required take-off runway length always equals the available runway length.	A balanced field length provides the greatest margin between "net" and "gross" take-off flight paths.	A balanced field length gives the minimum required field length in the event of an engine failure.	A balanced take-off provides the lowest ele vator in put force require ment for rotation.				
1948	32	The maximum indicated air speed of a piston engined aeroplane, in level flight, is reached:	at the lowest possible altitude.	at the optimum cruise	at the service ceiling.	at the practical ceiling.	0	0	1	0
1950	32	During a descent at constant Mach Number, the margin to low speed buffet will:	increase, because the lift coefficient in creases.	decrease, because the lift coefficient de creases.	increase, be cause the lift coefficient de creases.	remain constant, because the Mach number remains constant.	0	0	1	0
1951	32	(For this question use annex 032-2219A or Performance Manual SEP1 1 Figure 2.4) With regard to the graph for landing performance, what is the minimum headwind component required in order to land at Helgoland airport? Given: Runway length: 1300 ft Runway elevation: MSL	10 kt.	No wind .	5 kt.	15 kt.	1	0	0	0

		The landing reference speed VREF has, in accordance with	15%	20%	10%	30%				
		international requirements, the following margins above stall								
1052	32	speed in landing configuration:					0	0	0	1
1952	52	Changing the take-off flap setting from flap 15° to flap 5° will	a better climb	a shorter	a longer	a shorter	ŀ	ľ		H
		normally result in:	and an equal	take-off	take-off	take-off				
		······································	take-off	distance and	distance and	distance and				
			distance.	a better climb.	a better climb.	an equal climb.				
1953	32						0	0	1	0
		Which statement about reduced thrust is correct?	In case of	Reduced	Reduced	Reduced thrust				
			reduced	thrust can	thrustis	is used in				
			thrust V1	be used	primarily a	order to save				
			decreased.	actual	abatement					
				take-off	procedure.					
				mass is less						
				than the field						
				length limited						
1051				take-off mass.						
1954	32	What is the offect of toll window the time to shall be a shall	The first is	The first is	The first is	The offert and	10	¹	0	4
		altitude?	line time to	line time to	line time to	time to climb				
			not change.	increases.	decreases.	will depend on				
			not on angoi			the aeroplane				
						type.				
1955	32					<u> </u>	1	0	0	0
		Regarding take-off, the take-off decision speed V1:	is an	is the	is the	IS always equal				
			which the	the	the around	to VEF (Engine Eailure speed)				
			aeroplaneis	aeroplane	at which the	r and c speed).				
			airbomebut	upon	pilot is					
			below 35 ft	reaching 35	assumedto					
			and the pilot	feetabove	havemade					
			is assumed	the take-off	a decision to					
			to have	surface.	continue or					
			made a		discontinue					
			continue or		the take-on.					
			discontinue							
			the take-off.							
1956	32						0	0	1	0
		A flight is planned with a turbojet aeroplane to an aerodrome	1 250 m.	1 090 m.	1 655 m.	1 440 m.				
		following is the maximum landing distance for a dry rupway?								
1957	32						0	0	0	1
		A twin engined aeroplane in cruise flight with one engine	the long	the speed	the speed at	the speed	1		T	Π
		inoperative has to fly over high ground. In order to maintain	range speed.	correspondin	the	corresponding				
		the highest possible altitude the pilot should choose:		g to the	maximum lift.	to the				
				minimum		maximum				
				drag) A2 /2		/ dm g ratio				
1958	32			aray / 0/2.			0	0	0	1
		Long range cruise is a flight procedure which gives:	a specific	a 1% higher	an IAS which	a specific	1	┢	F	Η
			range which	TAS for	is 1% higher	range which is				
			is about	maximum	than the IAS	99% of				
			99% of	specific	formaximum	maximum				
			maximum	range.	specific	specific range				
			specific range and		range.	and a lower				
			higher cruise			oraise speed.				
			speed.							
1959	32						1	0	0	0
		(For this question use annex 032-1014A)	d	С	а	b				\square
		Assuming constant L/D ratio, which of the diagrams								
1060	32	provided correctly shows the movement of the "Thrust					^ ا	1	0	$\left \right $
1000	<u></u>	For jet-engined aeronlanes, what is the effect of increased	Decreases	Does not	Increases	Increases	H	⊢	H	Ĥ
		altitude on specific range?	200,000000.	change.	only if there					
1961	32				is no wind.		0	0	0	1
	_						_	_	_	_

1062	32	Considering TAS for maximum range and maximum endurance, other factors remaining constant,	TAS for maximum range will increase with increase d altitude while TAS for maximum endurance will decrease wit h increased altitude.	both will increase with increasi ng altitude.	both will decrease with increasing altitude.	both will stay constant regardless of altitude.	0	1	0	0
1002	-	The optimum long-range cruise altitude for a turbojet	is always	is	is only	increases			-	
1963	32	aeroplane:	equal to the powerplant ceiling.	independent of the aeroplane mass.	dependent on the outside air temperature.	when the aeroplane mass decreases.	0	0	0	1
1000	-	How does TAS vary in a constant Mach climb in the	TAS	TAS	TAS is	TAS is not	Ť	-	-	İ
1 96/	32	troposphere?	decreases.	increases.	constant.	related to Mach Number.	1	0	0	0
1965	32	Other factors remaining constant, how does increasing altitude affect Vx and Vy:	Both will increase.	Both will remain the same.	Both will decrease.	Vx will decrease and Vy will increase.	1	0	0	0
1966	32	With zero wind, the angle of attack for maximum range for an aeroplane with turbojet engines is:	equal to that maximum en durance.	equal to that correspondin g to zero induced drag.	lower than that of maximum lift to drag ratio.	equal to that of maximum lift to drag ratio.	0	0	0	1
1967	32	The angle of climb with flaps extended, compared to that with flaps retracted, will normally be:	Increase at moderate flap setting, decrease at large flap	Smaller.	Larger.	Not change.	0	1	0	0
1068	32	Two identical turbojet aeroplane (whose specific fuel consumptions are considered to be equal) are at holding speed at the same altitude. The mass of the first aircraft is 130 000 kg and its hourly fuel consumption is 4300 kg/h. The mass of the second aircraft is 115 000 kg and its hourly fuel consumption is:	3365 kg/h.	3578 kg/h.	3804 kg/h.	4044 kg/h.	0	0	1	0
1900	52	An operator shall ensure that the net take-off flight path	-90m +	90m +	90m + 0.125D	0.125D		0	-	
1969	32	clears all obstacles. The half-width of the obstacle-corridor at the distance D from the end of the TODA is at least:	1.125D	D/0. 125			0	0	1	0
1970	32	How does the best angle of climb and best rate of climb vary with increasing altitude?	Best angle of climb increases while best rate of climb decreases.	Best angle of climb decreases while best rate of climb increases.	Both decrease.	Both increase.	0	0	1	0
1074	20	Assuming that the required lift exists, which forces	Weightand	Thrust and	Weight and	Weight, drag				
19/1	32	A head wind will:	increase the climb flight	increase the angle of	increase the rate of climb.	and thrust. shorten the time of climb.		U	0	
1972	32			SIII 167.			1	0	0	0
1070	22	At which minimum height will the second climb segment end?	When gear retraction is	1500 ft above field	400 ft above field	35 ft above ground.			4	
1913	52		completed.	elevation.	elevation.		10	U	L -	U

		The requirements with regard to take-off flight path and the climb segments are only specified for:	2 engined aeroplane.	the failure of two engines on a	the failure of the critical engine on a	the failure of any engine on a				Π
				multi-engined aeroplane.	multi-engines aeroplane.	multi-engined aeroplane.				
1974	32						0	0	1	0
1975	32	In the event of engine failure below V1, the first action to be taken by the pilot in order to decelerate the aeroplane is to:	deploy airbrakes or	reduce the engine thrust	reverse engine	apply wheel brakes.	0	1	0	
10/0	51	During certification flight testing on a four engine turbojet aeroplane the actual take-off distances measured are:	2938 m	3050 m	3513 m	2555 m	0			
		- 3050 m with failure of the critical engine recognised at V1								
		- 2555 m with all engines operating and all other things being equal								
1976	32	The take-off distance adopted for the certification file is:		VP		1/2	0	1	0	0
1977	32	assuming max tyre speed and max brake energy speed are not limiting?		VK	VIMCA	VZ	0	1	0	0
1978	32	Which of the following represents the minimum for V1?	VMCG	VLOF	VMU	VR	1	0	0	0
1979	32	Vx and Vy with take-off flaps will be:	higher than that for clean configu ration.	same as that for clean configuration.	changed so that Vx increases and Vy decreases compared to clean configuration.	lower than that for clean configuration.	0	0	0	1
		Two identical aeroplanes at different masses are	At a given	At a given	At a given	There is no			┢	Η
1980	32	descending at idle thrust. Which of the following statements correctly describes their descent characteristics ?	angle of attack the heavier aeroplane will always glide further than the lighter aeroplane.	angle of attack the lighter aeroplane will always glide further than the heavier aeroplane.	angle of attack, both the vertical and the forward speed are greater for the heavier aeroplane.	difference between the descent characteristics of the two aeroplanes.	0	0	1	0
4.024	22	Take-off run is defined as the	horizontal distance along the take-off path from the start of the take-off to a point equidistant between the point at which VLOF is reached and the point at which the aeroplane is 35 ft above the take-off surface.	distance to V1 and stop, assuming an engine failure at V1.	distance to 35 feet with an engine failure at V1 or 1 15% all engine distance to 35 feet.	Distance from brake release to V2.				
1981	32	A jet aeroplane is flying long range cruise. How does the	Decrease /	Increase /	Increase /	Decrease /	1	0	0	0
1982	32	specific range / fuel flow change? During a glide at constant Mach number, the pitch angle of	decrease. remain	decrease. decrease.	increase. increase.	increase. increase at first	0	1	0	0
1.000	20	the aeroplane will:	constant.			and decrease later on.				
1983	32						0	1	0	U

		During a cruise flight of a jet a eroplane at constant flight	decrease /	increase/	increase/	decrease /				
1001	20	level and at the maximum range speed, the IAS / the drag	decrease.	decrease.	increase.	increase.				
1984	32	will:	la constant is			1	1	0	0	0
		An aeroplane carries out a descent from FL 410 to FL 270 at cruise Mach number and from FL 270 to FL 100 at the IAS	Is constant in	Decreases In	Increases in	Increases in the first part:				
		reached at FL 270	decreases in	increases in	is constant in	decreases in				
			the second	the second	the second	the second				
		How does the angle of descent change in the first and in the								
		second part of the descent?								
1985	32	Assessed the thread and also as a firm of the second thread and					0	0	1	0
		Which statement with respect to the step climb is correct?	Executing a	A step climb	A step climb	A step climb is				
			desiredstep	mustbe	isexecuted	executedin				
			climb at high	executed	because	principle				
			altitude can	immediately	ATC desires	when, just				
			be limited by	after the	a higher	after leveling				
			buffet on set	aeroplane	altitude.	off, the 1.3g				
			at g-loads	has		altitude is				
			largerthan I.	the entireum		reached.				
				altitude						
1986	32			annouc.			1	0	0	0
		Given that:	V2min<=	VMCG<=VEF	1.05	1.05 VMCG<	†	F	Ĥ	
			VEF<= VMU	< V1	VMCA<= VE	VEF<= VR				
		VEF= Critical engine failure speed			F<=V1					
		VMCG= Ground minimum control speed								
		VMCA= Air minimum control speed								
		VMU= Minimum unstick speed								
1987	32						0	1	0	0
		The determination of the maximum mass on brake release,	67 700 kg /	69 000 kg /	72 200 kg / 5	69 700 kg / 25				
		or a certified turbojet aeropiane with 5°, 15° and 25° haps	15 deg	15 deg	aeg	aeg				
		Flap angle: 5° 15° 25°								
		Runway limitation (kg): 66 000 69 500 71 500								
		2nd segment slope limitation: 72 200 69 000 61 800								
		Head wind:+120kg/kt								
		Given that the tail wind component is equal to 5 kt the								
1988	32	maximum mass on brake release and corresponding flap					1	0	0	0
		On a reciprocating engined aeroplane, with increasing	increases	increases but	decreases	remains				
		altitude at constant gross mass, angle of attack and	andtheTAS	TAS remains	slightly	unchanged				
		configuraton the power required	increases by	constant.	because of	but the TAS				
			thesame		the lower air	increases.				
			percentage.		density.					
1989	32						1	0	0	0
		The speed range between low speed buffet and high speed	narrows with	decreases	is only	increases with				
		buffet	increasing	with	limiting at	increasing				
			mass and	increasing	low altitudes.	mass.				
			increasing	mass and is						
			annude.							
1990	32			or annuae.			1	0	0	0
		For a turbojet aeroplane, what is the maximum landing	2 070 m.	1565 m.	1800 m.	2609 m.	† ·	F	Ĥ	-
		distance for wet runways when the landing distance								
		available at an aerodrome is 3000 m?					_			
1991	32						0	1	0	0
		Which of the following combinations basically has an effect	Configuration	Mass and	Altitude and	Configuration				
		ion the angle of descent in a glide?	anu angle of attack	annude.	configuration.	anu mass.				
1992	32	(Ignore compressibility effects.)					1	0	0	0
							-		_	

		Which data can be extracted from the Buffet Onset Boundary Chart?	The value of the critical Mach number at various masses and altitudes.	The value of the Mach number at which low speed and shockstall occur at various weights and altitudes.	The values of the Mach number at which low speed and Mach buffet occur at various masses and altitudes.	The value of maximum operating Mach number (MMO) at various masses and power settings.				
1993	32	What is the effect of a head wind component, compared to still air, on the maximum range speed (IAS) and the speed for maximum climb angle respectively?	Maximum range speed decreases and maximum climb angle speed decreases.	Maximum range speed increases and maximu m climb angle speed increases.	Maximum range speed increases and maximu m climb angle speed stays constant.	Maximum range speed decreases and maximum climb angle speed increases.	0	0	1	0
1994	32	The airspeed for jet aeroplanes at which power required is a minimum	is lower than the minimum drag speed in the climb and higher than the minimum drag speed in the descent.	is the same as the minimum drag speed.	is always lower than the minimum drag speed.	is always higher than the minimum drag speed.	0	0	1	0
1006	32	Given a jet aircraft. Which order of increasing speeds in the performance diagram is correct?	Vs, Maximum ra nge speed, Vx	Maximum en du rance spe ed, Maximum range spe ed, Vx	Vs, Vx, Maximum range speed	Maximum endurance speed, Long range speed, Maximum range speed		0	1	
1997	32	The point where Drag coefficient/Lift coefficient is a minimum is	the point where a tangent from the origin touches the drag curve.	the lowest point of the drag curve.	at stalling speed (VS).	on the "back side" of the drag curve.	1	0	0	0
1998	32	The lowest point of the drag or thrust required curve of a jet aeroplane, respectively, is the point for	minimum specific range.	minimum drag.	maximum specific range.	maximum en dura nce.	0	1	0	0
1999	32	The centre of gravity near, but still within, the aft limit	improves the maximum range.	increases the stalling speed.	improves the longitudinal stabiity.	decreases the maximum range.	1	0	0	0
		The Density Altitude	is used to calculate the FL above the Transition Altitude.	is used to determine the aeroplane performance.	is equal to the pressure altitude.	is used to establish minimum clearance of 2.000 feet over mountain				
2000	32	Which of the following combinations activates to affects	High	Low	High	s.	0	1	0	0
2001	32	take-off and initial climb performance ?	temperature and high relative humidit v	temperature and high relative humidit v	temperature and low relative humidity	temperature and low relative humidit v	1	0	0	0
		What effect has a downhill slope on the take-off speeds? The slope	has no effect on the	decreases the take-off	decreases the TAS for	increases the IAS for	ŀ			Ĥ
2002	32		take-off speed V1.	speed V1.	take-off.	take-off.	0	1	0	0

2003	32	A jet aeroplane equipped with old engines has a specific fuel consumption of 0.06 kg per Newton of thrust and per hour and, in a given flying condition, a fuel mileage of 14 kg per Nautical Mile. In the same flying conditions, the same aeroplane equipped with modern engines with a specific fuel consumption of 0.035 kg per Newton of thrust and per hour, has a fuel mileage of:	14 kg/NM.	11.7 kg/NM.	10.7 kg/NM.	8.17 kg/NM.	0	0	0	1
2004	32	Moving the center of gravity from the forward to the att limit (gross mass, altitude and airspeed remain unchanged)	decreases the induced drag and reduces the power required.	increases the power required.	affects neitherdrag norpower required.	increases the induced drag.	1	0	0	0
2005	32	With a jet aeroplane the maximum climb angle can be flown at approximately:	1.1Vs	The highest CL/CD ratio.	The highest CL/CD ² ratio.	1.2 Vs	0	1	0	0
2006	32	A higher outside air temperature	increases the angle of climb but decreases the rate of climb.	does not have any noticeable effect on climb performance.	reduces the angle of climb but increases the rate of climb.	reduces the angle and the rate of climb.	0	0	0	1
		Which of the following provides maximum obstacle clearance during climb?	1.2Vs.	The speed formaximum rate of climb.	The speed, at which the flaps may be selected one position further UP.	The speed for maximum climb angle Vx.		_		
2007	32	What happens when an aeroplane climbs at a constant Mach number?	The "1.3G" altitude is exceeded, so Mach buffet will start immediately.	The lift coefficient increases.	The TAS continues to increase, which may lead to structural problems.	IAS stays constant so there will be no problems.	0	1	0	0
2000	32	The speed for maximum lift/drag ratio will result in :	The maximum endurance for a propeller driven	The maximum angle of climb for a propeller driven	The maximum range for a propeller driven aeroplane.	The maximum range for a jet aeroplane.		0	1	
2009	02	For a jet transport aeroplane, which of the following is the reason for the use of 'maximum range speed'?	Longest flight duration.	drag.	Minimum specific fuel consumption.	Minimum fuel flow.				
2010	32	If a flight is performed with a higher "Cost Index" at a given mass which of the following will occur?	A better maximum	A better long range.	A higher cruise mach	A lower cruise mach number.	0	0	1	0
2011	32		range.		number.		0	0	1	0
2012	32	Which of the following sequences of speed for a jet aeroplane is correct ? (from low to high speeds)	Maximum endurance speed, maximum range speed, maxi mum angle of climb speed.	Maximum endurance speed, long range speed, maxi mum range speed.	Vs, maximum an gle climb speed, maximum range speed.	Vs, maximum range speed, maximum angle climb speed.	0	0	1	0
		What happens to the drag of a jet aeroplane if, during the initial climb after take off, constant IAS is maintained? (Assume a constant mass.)	The drag remains almost constant	The drag increases considerably.	The drag decreases.	The drag increases initially and decreases				
2013	32					thereafter.	1	0	0	0

2014	32	How does the lift coefficient for maximum range vary with altitude? (No compressibility effects.)	The lift coefficient increases with increasing altitude.	Only at low speeds the lift coefficient de creases with increasing altitude.	The lift coefficient is independant of altitude.	The lift coefficient decreases with increasing altitude.	0	0	1	0
2014	52	A four jet-engined aeroplane (mass = 150 000 kg) is established on climb with all engines operating. The lift-to-drag ratio is 14.	7.86%.	12.86%.	1.286%.	27%.		0	_	
2015	32	Each engine has a thrust of 75 000 Newtons. The gradient of climb is:					0	1	0	0
00.40		The maximum horizontal speed occurs when:	The thrust is equal to minimum drag.	The thrust does not increase further with increasing	The maximum thrust is equal to the total drag.	The thrust is equal to the maximum drag.				
2016	<u>3∠</u>	A twin jet aeroplane is in cruise, with one engine inoperative, and has to overfly a high terrain area. In order to allow the greatest clearance height, the appropriate airspeed must be	giving the lowest Cl/Cd ratio.	speed. giving the highest Cd/CI ratio.	for long-range cr uise.	of greatest lift-to-drag ratio.	0	0	1	0
2017	52	The point at which a tangent out of the origin touches the power required curve	is the maximum drag speed.	is the point where the Lift to Drag ratio is a maximum.	is the point where Drag coefficient is a minimum.	is the point where the Lift to Drag ratio is a minimum.		0	0	
2018	32	An increase in atmospheric pressure has, among other things, the following consequences on landing performance:	an increased landing distance and degraded go-around performance	an increased landing distance and improved go-around performance	a reduced landing distance and degraded go around performance	a reduced landing distance and improved go-around performance	0	1	0	0
2019	32	A decrease in atmospheric pressure has, among other things, the following consequences on take-off performance:	a reduced take-off distance and improved initial climb	an increased take-off distance and improved initial climb	a reduced take-off distance and degraded initial climb	an increased take-off distance and degraded initial climb	0	0	0	. 1
2020	32		performance	performance	performance	performance	0	0	0	1
		An increase in atmospheric pressure has, among other things, the following consequences on take-off performance:	an increases take-off distance and degraded initial climb performance	an increased take-off distance and improved initial climb performance	a reduced take-off distance and degraded initial climb performance	a reduced take-off distance and improved initial climb performance				
2021	32	The 'maximum tyre speed' limits:	V1 in kt	VLOF in	V1 in kt TAS.	VR, or VMU if	0	0	0	1
2022	32		ground speed.	terms of ground speed.		this is lower than VR.	0	1	0	0
2023	32	The lift coefficient decreases during a glide with constant Mach number, mainly because the :	aircraftmass decreases.	TAS decreases.	glide angle increases.	IAS increases.	0	0	0	1
		(For this question use annex 032-2211A)	Figure b	Figure c	Figure a	Figure d	Ē	Ē	-	H
2024	32	Which of the following diagrams correctly shows the movement of the power required curve with increasing					0	0	0	1
		In a steady descending flight (descent angle GAMMA) equilibrium of forces acting on the aeroplane is given by:	T + W sin GAMMA = D	T - W sin GAMMA = D	T - D = W sin GAMMA	T + D = - W sin GAMMA	ĺ	_		
2025	32	(T = Thrust, D = Drag, W = Weight)					1	0	0	0

20.26	32	Approaching in turbulent wind conditions requires a change in the landing reference speed (VREF):	Increasing VREF and making a steeper glide path to avoid the use of spoilers.	Increasing VREF	Lowering VREF	Keeping same VREF because wind has no influence on IAS.		1	0	0
2020	52	A headwind component increasing with altitude, as compared to zero wind condition, (assuming IAS is constant)	has no effect on rate of climb.	do es not ha ve a ny effect on the angle of flight path during climb.	improves angle and rate of climb.	decreases angle and rate of climb.				
2027	32	With respect to the optimum altitude, which of the following statements is correct ?	An aeroplane al ways flies at the optimum altitude be cause this is economically seen as the most at tractive altitude.	An aeroplane fli es most of the time above the optimum altitude be cause this yields the most economic result.	An aeroplane sometimes flies above or below the optimum altitude because optimum altitude increases continuously during flight.	An aeroplane always fies below the optimum altitude, because Mach buffet might occur.	1	0	0	0
2020	32	(For this question use annex 032-4744A) Considering a rate of climb diagram (ROC versus TAS) for an aeroplane. Which of the diagrams shows the correct curves for "flaps down" compared to "clean" configuration?	b	C	d	a	0	0		1
2029	32	A jet aeroplane is climbing at constant Mach number below the trop opause. Which of the following statements is correct?	IAS decreases and TAS increases.	IAS increases an d TAS decreases.	IAS decreases and TAS decreases.	IAS increases and TAS increases.	0	0	1	0
2031	32	With all engines out, a pilot wants to fly for maximum time. Therefore he has to fly the speed corresponding to:	the maximum lift.	the minimum drag.	the critical Mach number.	the minimum angle of descent.	0	1	0	0
2032	32	(For this question use annex 032-2929A) Consider the graphic representation of the power required versus true air speed (TAS), for a piston engined aeroplane with a given mass. When drawing the tangent from the origin, the point of contact (A) determines the speed of:	maximum thrust.	critica I angle of attack.	maximum specific range.	maximum endurance.	0	0	1	0
20.22	22	For a piston engined aeroplane, the speed for maximum range is :	that which givesthe minimum value of drag.	that which givesthe maximun value of lift	1.4 times the stall speed in clean configuration.	that which gives the maximum lift to drag ratio.				
2033	32	Complete the following statement regarding the take-off performance of an aeroplane in performance class A. Following an engine failure at (i) and allowing for a reaction time of (ii)a correctly loaded aircraft must be capable of decelerating to a halt within the (iii)	(i) V2 (ii) 3 seconds (iii) Take-off distance available.	(i) V1 (ii) 1 second (ii) Accelerate - stop distance avai lable.	(i) V1 (ii)2 seconds (iii) Take-off distance available.	(i) V1 (ii)2 seconds (ii) Accelerate - stop distance available.	0	0	0	1
2025	32	What is the effect of increased mass on the performance of a gliding aeroplane?	There is no effect.	The gliding angle decreases.	The lift/drag ratio decreases.	The speed for best angle of descent increases.	0	0	0	
2000		If the take-off mass of an aeroplane is tyre speed limited, downhill slope would	increase the required take-off distance.	have no effect on the maximum mass for take-off.	decrease the maximum mass for take-off.	increase the maximum mass for take-off.				
2036	32						0	1	0	0

00.07		The first segment of the take-off flight path ends	at 35 ft above the runway.	at completion of gear retraction.	at completion of flap retraction.	at reaching V2.				
2037	32	The take-off mass could be limited by	the take-off distance available (TODA) only.	the take-off distance available (TODA), the maximum brake energy and the climb gradient with one engine inoperative.	the maximum brake energy only.	the climb gradient with one engine inoperative only.	0	1	0	
2030	54	Which of the following factors will lead to an increase of ground distance during a glide, while maintaining the appropriate minimum glide angle speed?	Increase of aircraft mass.	Decrease of aircraft mass.	Headwind.	Tailwind.				
2039	32	What is the most important aspect of the 'backside of the power curve'?	The speed is un stable.	The aeroplane will not stall.	The altitude cannot be maintained.	The elevator must be pulled to lower the nose.	0	0	0	1
2040	32	Which of the following three speeds of a jet aeroplane are basically identical? The speeds for:	maximum climb angle, minimum glide angle and maximum	holding, maximum climb angle and minimum glid e angle.	maximum drag, maximum endurance and maximum climb ando	maximum range, minimum drag and minimum glide angle.	1	1	0	0
2041	32	(For this question use annex 032-4743A or Performance Manual MEP1 Figure 3.2) With regard to the graph for the light twin aeroplane, will the accelerate and stop distance be achieved in a take-off where the brakes are released before take-off power is set?	Yes, the chart has been made for this situation.	It does not matter which take-off technique is being used.	No, the performance will be worse than in the chart.	Performance will be better than in the chart.	0	0	1	0
2043	32	In the event that the take-off mass is obstacle limited and the take-off flight path includes a turn, the bank angle should not exceed	15 degrees up to height of 400 ft.	10 degrees up to a height of 400 ft.	20 degrees up to a height of 400 ft.	25 degrees up to a height of 400 ft.	1	0	0	0
2044	32	You climb with a climb speed schedule 300/.78. What do you expect in the crossover altitude 29 200 ft (OAT =ISA) ?	During the acceleration to the Mach number .78 the rate of climb is approximatel y zero.	No noticeable eff ect since the true airspeed at 300 kt IAS and .78 Mach are the same (at ISA temperature TAS=460 kt)	The rate of climb increases since the constant IAS-climb is replaced by the constant Mach-climb.	The rate of climb decreases since climb performance at a constant Mach number is grossly reduced as compared to constant IA S.	0	0	1	0
2011		If the climb speed schedule is changed from 280/.74 to 290/.74 the new crossover altitude is	lower.	higher.	un changed.	only affected by the aeroplane		_		
2045 2046	32	The optimum cruise altitude is	the pressure altitude at which the best specific range can be achieved.	the pressure altitude at which the fuel flow is a maximum.	the pressure altitude up to which a cabin altitude of 8000 ft can be maintained.	the pressure altitude at which the speed for high speed buffet as TAS is a maximum.	1	0	0	0

		The optimum cruise altitude increases	if the	if the tailwind	if the	ifthe				
			temperature	component is	aeroplane	aeroplane mas				
			(UAT) IS	decreased.	mass is	s is decreased.				
2047	32		inci ea seu.		inci ea seu.		0	0	0	1
		Below the optimum cruise altitude	the TAS for	the Mach	the Mach	the IAS for				Н
		•	longrange	number for	number for	longrange				
			cruise	longrange	longrange	cruise				
			increases	cruise	cruise	increases				
			continuously	increases	decreases	continu ously				
			with	continuously	continuously	with				
			decreasing	with	with	decreasing				
20.40	22		altitude.	decreasing	decreasing	altitude.			1	
2046	32	l lader which condition of and some first on aider the lawson (4	lf at the lawser	altitude.	altitude.	lf the		0	<u> </u>	Ľ
		000 ft or more) than the optimum altitude 2	altitude either	altitude either	maximum	li line temperature is				
			more	considerably	altitude is	lower at the				
			headwindor	less	below the	low altitude				
			less tailwind	headwindor	optimum	(high altitude				
			can be	considerably	altitude.	inversion).				
			expected.	more tailwind		,				
				can be						
				expected.						
20.40	22							4		
2049	J∠	Which of the following is a reason to ensure an ensure and	In order to	The circent	In order to	It is officiant to		<u> </u>		Н
		at long range speed?	achieve			IL IS EILICIENT TO				
		a long range speed :	speed		of speed	faster than				
			stability.	close to the	stability and	with maximum				
				buffet on set	tuck-under.	range speed.				
				speed.		J J I I I I I I I I I I I I I I I I I I				
2050	32						0	0	0	1
		Which of the following factors leads to the maximum flight	High mass.	Headwind.	Tailwind.	Low mass.				Π
2051	32	time of a glide?					0	0	0	1
		The climb limited take-off mass can be increased by	selecting a	selecting a	selecting a	a lower flap				
			lower V1.	lower V2.	lower VR.	setting for				
						take-off and				
2052	32					selecting a		6	6	1
2032	02	Reduced take off thrust should normally not be used when:	the run way is	it is dark	the run way is	obstacles are	ľ	•	ľ	H
		reduced take on thirdst should normally not be used when.	contaminated.	it is dark.	wet.	present close				
						to the end of				
						the run way.				
2053	32					-	1	0	0	0
		When V1 has to be reduced because of a wet runway the	decreases/	increases/	remains	decreases/				
		on e engine out obstacle clearance / climb performance:	remains	increases.	constant/	decreases.				
0054	~~		constant.		remains					
2054	32		10.07		constant.		1	0	0	
		The landing field length required for turbojet aeroplanes at	43%	92%	67%	70%				
2055	32	distance nus					0	1	0	0
		Which statement is correct for a descent without engine	A tailwind	A tailwind	A tailwind	A headwind	Ē	ŀ	Ē	Ħ
		thrust at maximum lift to drag ratio speed?	component	component	component	component				
		Ŭ .	increases	decreases	increases	increases the				
			fuel and time	the ground	the ground	ground				
			to descent.	distance.	distance.	distance.				
2056	32						0	0	1	0
		If the level-off altitude is below the obstacle clearance	the	fuel	the drift down	fuel jettisoning				
		altitude during a drift down procedure	recommende	jettisoning	should be	should be				
			a aritt down	should be		started at the				
			speed	started when	naps in the	drift down				
			disregarded		configuration	unit uOwn.				
			and it should		comgutation.					
			be flown at	reached.						
			the stall							
			speed plus							
			10 kt.							
2057	32						0	0	0	1

2058	32	'Drift down' is the procedure to be applied	after cabin depressurizat ion.	to conduct an instrument approach at the alternate.	to conduct a visual approach if VASI is available.	after engine failure if the aeroplane is above the one engine out maximum altitude.	0	0	0	1	
~~~~		The use of reduced take-off thrust is permitted, only if:	The take-off distance available is lower than the take-off distance required one engine out at V1.	The actual take-off mass (TOM) including a margin is greater than the performance limited TOM.	The actual take-off mass (TOM) is greater than the climb limited TOM.	The actual take-off mass (TOM) is lower than the field length limited TOM.					
2059	32	The landing field length required for jet aeroplanes at the	67%	92%	43%	70%	0	0	0	1	┥
2060	32	altemate (wet condition) is the demonstrated landing distance plus					0	1	0	0	
		Higher gross mass at the same altitude decreases the gradient and the rate of climb whereas	VY and VX are not affected by a higher gross mass.	VY and VX are decreased.	VY and VX are increased.	VX is increased and VY is decreased.					
2061	32	The maximum mass for landing could be limited by	the climb	the climb	the climb	the climb	0	0	1	0	┥
2062	30		requirements with one engine ino perative in the landing confi guration.	requirements with all engines in the approach co nfiguration.	requirements with all engines in the landing configuration but with gear up.	requirements with one engine inopera tive in the approach configuration.		0	0	1	
2002		An aeroplane executes a steady glide at the speed for minimum glide angle. If the forward speed is kept constant, what is the effect of a lower mass?	increases / increases / decreases	decreases / constant / decreases	increases / increases / constant	increases / constant / increases					-
2063	32	Rate of descent / Glide angle / CL/CD ratio					1	0	0	0	4
2064	32	An aeroplane is in a power off glide at best gliding speed. If the pilot increases pitch attitude the glide distance:	remains the same.	may increase or decrease depending on the aeroplane.	decreases.	Increases.	0	0	1	0	
2065	32	The speed V2 of a jet aeroplane must be greater than:	1.05VLOF.	1.3V1.	1.2Vs.	1.2VMCG.	0	0	1	0	
2066	32	Which of the following speeds can be limited by the 'maximum tyre speed'?	Lift-off IAS.	Lift-off TAS.	Lift-off EAS.	Lift-off groundspeed.	0	0	0	1	1
2067	32	Reduced take-off thrust should normally not be used when:	windshearis reported on the take-off path.	it is dark.	the runway is dry.	the runway is wet.	1	0	0	0	
2068	32	Reduced take-off thrust should normally not be used when:	the run way is	the OAT is	anti skid is	it is dark.	0	0	1	0	1
2069	32	After engine failure the aeroplane is unable to maintain its cruising altitude. What is the procedure which should be applied?	Emergency Descent Procedure.	ETOPS.	Long Range Cruise Descent.	Drift Down Procedure.	0	0	0	1	
2070	32	Which of the following statements is correct?	VR is the speed at which the pilot should start to rotate the aeroplane.	VR should not be higher than V1.	VR should not be higher than 1.05 VMCG.	VR is the speed at which, during rotation, the nose wheel comes off the runway.	1	0	0	0	

00.74	20	The 'climb gradient' is defined as the ratio of	true airspeed to rate of climb.	rate of climb to true airspeed.	the increase of altitude to horizontal air distance expressed as a percentage.	the increase of altitude to distance over ground expressed as a percentage.				
2071	32	The best rate of climb at a constant gross mass	decreases with increasing altitude since the thrust available decreases due to the lower air	increases with increasing altitude since the drag decreases due to the lower air density.	increases with increasing altitude due to the higher true airspeed.	is independent of altitude.			1	
2072	32	As long as an aeroplane is in a positive climb	density. VX is sometimes below and sometimes above VY depending	VX is always above VY.	VY is always above VMO.	VX is always below VY.	1	0	0	0
2073	32	Any acceleration in climb, with a constant power setting,	improves the climb gradient if the airspeed is below VX.	improves the rate of climb if the airspeed is below VY.	decreases rate of climb and increses angle of climb.	decreases the rate of climb and the angle of climb.	0	0	0	1
2075	32	If the thrust available exceeds the thrust required for level flight	the aeroplane ac celerates if the altitude is maintained	the aeroplane de scends if the airspeed is maintained.	the aeroplane de celerates if it is in the region of reversed command.	the aeroplane decelerates if the altitude is maintained.	1	0	0	0
		The rate of climb	is angle of climb times true airspeed.	is the horizontal component of the true airspeed.	is approximatel y climb gradient times true airspeed divided by	is the downhill component of the true airspeed.				
2076	32	Which of the equations below expresses approximately the unaccelerated percentage climb gradient for small climb angles?	Climb Gradient = ((Thrust - Drag)/Weight ) x 100	Climb Gradient = ((Thrust + Drag)/Lift) x 100	100. Climb Gradient = ((Thrust - Mass)/Lift) x 100	Cimb Gradient = (Lift/Weight) x 100	1	0	0	0
2078	32	Which statement is correct for a descent without engine thrust at maximum lift to drag ratio speed?	The higher the gross mass the greater is the speed for descent.	The higher the gross mass the lower is the speed for descent.	The higher the average temperature (OAT) the lower is the speed for descent.	The mass of an aeroplane does not have any effect on the speed for descent.	1	0	0	0
2079	32	In unaccelerated climb	lift equals weight plus the vertical component of the drag.	thrust equals drag plus the uphill component of the gross weight in the flight path direction.	thrust equals drag plus the downhill component of the gross weight in the flight path direction.	lift is greater than the gross weight.	0	0	1	0

		With one or two engines inoperative the best specific range	reduced.	improved.	not affected.	firstimproved				
		at high altitudes is				andlater				
2080	32					reaucea.	1	0	0	0
2081	32	Which statement concerning the inclusion of a clearway in take-off calculation is correct?	V1 is increased.	V1 remains constant.	The field length limited take-o ff mass will increase.	The usable length of the clearway is not limited.	0	0	1	0
2082	32	Which of the following statements, concerning the obstacle limited take-off mass for performance class A aeroplane, is correct?	It should be calculated in such a way that there is a margin of 50 ft with respect to the "net take off flight path".	It cannot be lower than the correspondin g climb limited take-off mass.	It should be determined on the basis of a 35 ft obstacle clearance with the respect to the "net take-off flight path".	It should not be corrected for 30° bank tums in the take-off path.	0	0	1	0
2083	32	Concerning the landing gear, which of the following factors would limit the take-off mass?	Nitrogen pressure in the strut and brake temperature.	Rate of rotation of the wheel at lift off and brake en ergy.	Tyre pressure and brake temperature.	Rate of rotation of the wheel and tyre pressure.	0	1	0	0
2084	32	On a long distance flight the gross mass decreases continuously as a consequence of the fuel consumption. The result is:	The specific range and the optimum altitu de increases.	The speed must be increased to compensate the lower mass.	The specific range increases and the optimum altitude decreases.	The specific range decreases and the optimum altitude increases.	1	0	0	0